High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing

被引:147
|
作者
Buch, I. [1 ]
Harvey, M. J. [2 ]
Giorgino, T. [1 ]
Anderson, D. P. [3 ]
De Fabritiis, G. [1 ]
机构
[1] Univ Pompeu Fabra, Computat Biochem & Biophys Lab GRIB IMIM, Barcelona 08003, Spain
[2] Univ London Imperial Coll Sci Technol & Med, High Performance Comp Serv, London SW7 2AZ, England
[3] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
FREE-ENERGY; SH2; DOMAIN; BINDING; LIGAND; ENERGETICS;
D O I
10.1021/ci900455r
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Although molecular dynamics simulation methods are useful in the modeling of macromolecular systems, they remain computationally expensive, with production work requiring costly high-performance computing (HPC) resources. We review recent innovations in accelerating molecular dynamics on graphics processing units (GPUs), and we describe GPUGRID, a volunteer computing project that uses the GPU resources of nondedicated desktop and workstation computers. In particular, we demonstrate the capability of simulating thousands of all-atom molecular trajectories generated at an average of 20 ns/day each (for systems of similar to 30 000-80 000 atoms). In conjunction with a potential of mean force (PMF) protocol for computing binding free energies, we demonstrate the use of GPUGRID in the computation of accurate binding affinities of the Src SH2 domain/pYEEI ligand complex by reconstructing the PMF over 373 umbrella sampling windows of 55 ns each (20.5 mu s of total data). We obtain a standard free energy of binding of -8.7 +/- 0.4 kcal/mol within 0.7 kcal/mol from experimental results. This infrastructure will provide the basis for a robust system for high-throughput accurate binding affinity prediction.
引用
收藏
页码:397 / 403
页数:7
相关论文
共 50 条
  • [31] Monte Carlo vs molecular dynamics for all-atom polypeptide folding simulations
    Ulmschneider, Jakob P.
    Ulmschneider, Martin B.
    Di Nola, Alfredo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (33): : 16733 - 16742
  • [32] Protein Diffusion in a Dense Solution Studied by All-Atom Molecular Dynamics Simulations
    Nawrocki, Grzegorz
    Wang, Po-hung
    Yu, Isseki
    Sugita, Yuji
    Feig, Michael
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (03) : 233A - 234A
  • [33] All-atom simulations of crowding effects on ubiquitin dynamics
    Abriata, Luciano A.
    Spiga, Enrico
    Dal Peraro, Matteo
    [J]. PHYSICAL BIOLOGY, 2013, 10 (04)
  • [34] All-Atom Simulations Reveal Ensemble Dynamics of Rhodopsin
    Leioatts, Nicholas
    Romo, Tod D.
    Grossfield, Alan
    [J]. BIOPHYSICAL JOURNAL, 2014, 106 (02) : 307A - 307A
  • [35] Modeling sizing emulsion droplet deposition onto silica using all-atom molecular dynamics simulations
    Zarrini, Salman
    Abrams, Cameron F.
    [J]. COMPOSITES PART B-ENGINEERING, 2022, 235
  • [36] Modeling sizing emulsion droplet deposition onto silica using all-atom molecular dynamics simulations
    Zarrini, Salman
    Abrams, Cameron F.
    [J]. Composites Part B: Engineering, 2022, 235
  • [37] Understanding adsorption behavior of α-chymotrypsin onto cation, exchanger using all-atom, molecular dynamics simulations
    Tournois, Marine
    Mathe, Stephane
    Andre, Isabelle
    Esque, Jeremy
    Fernandez, Maria A.
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2020, 1614
  • [38] On Using Atomistic Solvent Layers in Hybrid All-Atom/Coarse-Grained Molecular Dynamics Simulations
    Kuhn, Alexander B.
    Gopal, Srinivasa M.
    Schaefer, Lars V.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (09) : 4460 - 4472
  • [39] Predicting Novel Binding Modes of Agonists to β Adrenergic Receptors Using All-Atom Molecular Dynamics Simulations
    Vanni, Stefano
    Neri, Marilisa
    Tavernelli, Ivano
    Rothlisberger, Ursula
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (01)
  • [40] Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations
    Pavel V. Klimovich
    David L. Mobley
    [J]. Journal of Computer-Aided Molecular Design, 2010, 24 : 307 - 316