High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing

被引:147
|
作者
Buch, I. [1 ]
Harvey, M. J. [2 ]
Giorgino, T. [1 ]
Anderson, D. P. [3 ]
De Fabritiis, G. [1 ]
机构
[1] Univ Pompeu Fabra, Computat Biochem & Biophys Lab GRIB IMIM, Barcelona 08003, Spain
[2] Univ London Imperial Coll Sci Technol & Med, High Performance Comp Serv, London SW7 2AZ, England
[3] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
FREE-ENERGY; SH2; DOMAIN; BINDING; LIGAND; ENERGETICS;
D O I
10.1021/ci900455r
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Although molecular dynamics simulation methods are useful in the modeling of macromolecular systems, they remain computationally expensive, with production work requiring costly high-performance computing (HPC) resources. We review recent innovations in accelerating molecular dynamics on graphics processing units (GPUs), and we describe GPUGRID, a volunteer computing project that uses the GPU resources of nondedicated desktop and workstation computers. In particular, we demonstrate the capability of simulating thousands of all-atom molecular trajectories generated at an average of 20 ns/day each (for systems of similar to 30 000-80 000 atoms). In conjunction with a potential of mean force (PMF) protocol for computing binding free energies, we demonstrate the use of GPUGRID in the computation of accurate binding affinities of the Src SH2 domain/pYEEI ligand complex by reconstructing the PMF over 373 umbrella sampling windows of 55 ns each (20.5 mu s of total data). We obtain a standard free energy of binding of -8.7 +/- 0.4 kcal/mol within 0.7 kcal/mol from experimental results. This infrastructure will provide the basis for a robust system for high-throughput accurate binding affinity prediction.
引用
收藏
页码:397 / 403
页数:7
相关论文
共 50 条
  • [1] All-Atom Molecular Dynamics Simulations of Whole Viruses
    Tarasova, Elvira
    Nerukh, Dmitry
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (19): : 5805 - 5809
  • [2] Dynamics of Protein-RNA Interfaces Using All-Atom Molecular Dynamics Simulations
    Sabei, Afra
    Hognon, Cecilia
    Martin, Juliette
    Frezza, Elisa
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (20): : 4865 - 4886
  • [3] Reaching biological timescales with all-atom molecular dynamics simulations
    Zwier, Matthew C.
    Chong, Lillian T.
    [J]. CURRENT OPINION IN PHARMACOLOGY, 2010, 10 (06) : 745 - 752
  • [4] All-atom molecular dynamics simulations of polymer and polyelectrolyte brushes
    Ishraaq, Raashiq
    Das, Siddhartha
    [J]. CHEMICAL COMMUNICATIONS, 2024, 60 (48) : 6093 - 6129
  • [5] Titratable water model for all-atom molecular dynamics simulations
    Shen, Jana
    Chen, Wei
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [6] Prediction of fold resistance for inhibitors of EGFR using all-atom molecular dynamics simulations
    Balius, Trent E.
    Rizzo, Robert C.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [7] Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics
    Erban, Radek
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2186):
  • [8] The folding pathway of ubiquitin from all-atom molecular dynamics simulations
    Marianayagam, NJ
    Jackson, SE
    [J]. BIOPHYSICAL CHEMISTRY, 2004, 111 (02) : 159 - 171
  • [9] All-Atom Molecular Dynamics Simulations of Communication Between Nanochannel Arrays
    Manikandan, D.
    Nayak, Pramoda K. K.
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 11640 - 11650
  • [10] A computational study of cellulose regeneration: All-atom molecular dynamics simulations
    Heasman, Patrick
    Mehandzhiyski, Aleksandar Y.
    Ghosh, Sarbani
    Zozoulenko, Igor
    [J]. CARBOHYDRATE POLYMERS, 2023, 311