measurement error;
change;
multivariate linear models;
regression calibration;
D O I:
10.1002/sim.1352
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
A simple general algorithm is described for correcting for bias caused by measurement error in independent variables in multivariate linear regression. This algorithm, using standard software, is then applied to several approaches to the analysis of change from baseline as a function of baseline value of the outcome measure plus other covariates, any of which might have measurement error. The algorithm may also be used when the independent variables differ by component of the multivariate independent variable. Simulations indicate that under various conditions bias is much reduced, as is mean squared error, and coverage of 95 per cent confidence intervals is good. Copyright (C) 2003 John Wiley Sons, Ltd.
机构:
Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, AustraliaUniv New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Stoklosa, Jakub
Dann, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Phillip Isl Nat Pk, Res Dept, Phillip Island, Vic 3922, AustraliaUniv New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Dann, Peter
Huggins, Richard M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, AustraliaUniv New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Huggins, Richard M.
Hwang, Wen-Han
论文数: 0引用数: 0
h-index: 0
机构:
Natl Chung Hsing Univ, Inst Stat, Taichung 402, Taiwan
Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, TaiwanUniv New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
机构:
Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, CanadaUniv Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada