Can quantum mechanics be reconciled with cellular automata?

被引:9
|
作者
't Hooft, G [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3508 TA Utrecht, Netherlands
关键词
quantum mechanics; cellular automata; rotational and translational symmetry; spin and the Bell inequalities;
D O I
10.1023/A:1024407719002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
After a brief account of the GHZ version of the Bell inequalities, we indicate how fermionic fields can emerge in a description of statistical features in cellular automata. In square lattices, rotations over arbitrary angles can be formulated in terms of such fields, but it will be difficult to produce models with exact rotational invariance. Symmetries such as rotational symmetry will have to be central in attempts to produce realistic models.
引用
收藏
页码:349 / 354
页数:6
相关论文
共 50 条
  • [21] A review of Quantum Cellular Automata
    Farrelly, Terry
    QUANTUM, 2020, 4
  • [22] Scrambling in quantum cellular automata
    Kent, Brian
    Racz, Sarah
    Shashi, Sanjit
    PHYSICAL REVIEW B, 2023, 107 (14)
  • [23] Classification of Quantum Cellular Automata
    Freedman, Michael
    Hastings, Matthew B.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 1171 - 1222
  • [24] Classification of Quantum Cellular Automata
    Michael Freedman
    Matthew B. Hastings
    Communications in Mathematical Physics, 2020, 376 : 1171 - 1222
  • [25] Ergodicity of quantum cellular automata
    Richter, S
    Werner, RF
    JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (3-4) : 963 - 998
  • [26] An overview of quantum cellular automata
    P. Arrighi
    Natural Computing, 2019, 18 : 885 - 899
  • [27] Ergodicity or Quantum Cellular Automata
    J Stat Phys, 82 (963):
  • [28] Structures in quantum cellular automata
    Groessing, Gerhard
    Zeilinger, Anton
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1988, 151 (1-2): : 366 - 369
  • [29] Quantum cloning by cellular automata
    D'Ariano, G. M.
    Macchiavello, C.
    Rossi, M.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [30] Can quantum regression theorem be reconciled with quantum fluctuation dissipation theorem ?
    Shiktorov, P
    Starikov, E
    Grulinskis, V
    Reggiani, L
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2003, 665 : 592 - 599