TportHMM: Predicting the substrate class of transmembrane transport proteins using profile Hidden Markov Models

被引:0
|
作者
Shamloo, Shiva
Ye, Qing
Butler, Gregory
机构
关键词
MULTIPLE SEQUENCE ALIGNMENT; WEB SERVER; MEMBRANE TRANSPORTERS; CLASSIFICATION; NETWORKS; COFFEE;
D O I
10.1109/BIBM49941.2020.9313229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transporters make up a large proportion of proteins in a cell, and play important roles in metabolism, regulation, and signal transduction by mediating movement of compounds across membranes. There is a need for tools that predict the substrates which are transported at the level of substrate class and the level of specific substrate. Our work develops a predictor, TportHMM, using profile Hidden Markov Model (HMM). We explore the role of multiple sequence alignment (MSA) algorithms to utilise evolutionary information, specificity-determining site (SDS) algorithms to highlight positional information, and a profile Hidden Markov Model (HMM) classifier to utilise sequence information. We study the impact of different MSA algorithms (ClustalW, Clustal Omega, MAFFT, MUSCLE, AQUA, T-Coffee and TM-Coffee), and different SDS algorithms (Speer Server, GroupSim, Xdet and TCS). We compare these approaches with the state-of-the-art, TrSSP and TranCEP.
引用
收藏
页码:2812 / 2817
页数:6
相关论文
共 50 条
  • [21] Predicting Social Unrest Events with Hidden Markov Models Using GDELT
    Qiao, Fengcai
    Li, Pei
    Zhang, Xin
    Ding, Zhaoyun
    Cheng, Jiajun
    Wang, Hui
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [22] Predicting enhancers in mammalian genomes using supervised hidden Markov models
    Tobias Zehnder
    Philipp Benner
    Martin Vingron
    [J]. BMC Bioinformatics, 20
  • [23] Predicting enhancers in mammalian genomes using supervised hidden Markov models
    Zehnder, Tobias
    Benner, Philipp
    Vingron, Martin
    [J]. BMC BIOINFORMATICS, 2019, 20 (1)
  • [24] COACH:: profile-profile alignment of protein families using hidden Markov models
    Edgar, RC
    Sjölander, K
    [J]. BIOINFORMATICS, 2004, 20 (08) : 1309 - 1318
  • [25] A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models
    Nikolaos G Sgourakis
    Pantelis G Bagos
    Panagiotis K Papasaikas
    Stavros J Hamodrakas
    [J]. BMC Bioinformatics, 6
  • [26] A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models
    Sgourakis, NG
    Bagos, PG
    Papasaikas, PK
    Hamodrakas, SJ
    [J]. BMC BIOINFORMATICS, 2005, 6 (1)
  • [27] Identifying chimerism in proteins using hidden Markov models of codon usage
    Hunter, L
    Zeeberg, B
    [J]. ISMB-97 - FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY, PROCEEDINGS, 1997, : 153 - 156
  • [28] Detecting and Predicting Anomalies for Edge Cluster Environments using Hidden Markov Models
    Samir, Areeg
    Pahl, Claus
    [J]. 2019 FOURTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2019, : 21 - 28
  • [29] Predicting play calls in the National Football League using hidden Markov models
    Oetting, Marius
    [J]. IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2021, 32 (04) : 535 - 545
  • [30] Predicting GPCR-G-protein coupling using hidden Markov models
    Sreekumar, KR
    Huang, YP
    Pausch, MH
    Gulukota, K
    [J]. BIOINFORMATICS, 2004, 20 (18) : 3490 - 3499