TportHMM: Predicting the substrate class of transmembrane transport proteins using profile Hidden Markov Models

被引:0
|
作者
Shamloo, Shiva
Ye, Qing
Butler, Gregory
机构
关键词
MULTIPLE SEQUENCE ALIGNMENT; WEB SERVER; MEMBRANE TRANSPORTERS; CLASSIFICATION; NETWORKS; COFFEE;
D O I
10.1109/BIBM49941.2020.9313229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transporters make up a large proportion of proteins in a cell, and play important roles in metabolism, regulation, and signal transduction by mediating movement of compounds across membranes. There is a need for tools that predict the substrates which are transported at the level of substrate class and the level of specific substrate. Our work develops a predictor, TportHMM, using profile Hidden Markov Model (HMM). We explore the role of multiple sequence alignment (MSA) algorithms to utilise evolutionary information, specificity-determining site (SDS) algorithms to highlight positional information, and a profile Hidden Markov Model (HMM) classifier to utilise sequence information. We study the impact of different MSA algorithms (ClustalW, Clustal Omega, MAFFT, MUSCLE, AQUA, T-Coffee and TM-Coffee), and different SDS algorithms (Speer Server, GroupSim, Xdet and TCS). We compare these approaches with the state-of-the-art, TrSSP and TranCEP.
引用
收藏
页码:2812 / 2817
页数:6
相关论文
共 50 条
  • [1] TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information
    Alballa, Munira
    Aplop, Faizah
    Butler, Gregory
    [J]. PLOS ONE, 2020, 15 (01):
  • [2] Predicting the specific substrate for transmembrane transport proteins using BERT language model
    Ataei, Sima
    Butler, Gregory
    [J]. 2022 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (IEEE CIBCB 2022), 2022, : 168 - 175
  • [3] Hidden markov model for the prediction of transmembrane proteins using MATLAB
    Chaturvedi, Navaneet
    Shanker, Sudhanshu
    Singh, Vinay Kumar
    Sinha, Dhiraj
    Pandey, Paras Nath
    [J]. BIOINFORMATION, 2011, 7 (08) : 418 - 421
  • [4] Predicting Protein Structural Class Based on Hidden Markov Models
    Wang, Peng
    Yang, Huiyun
    Shi, Yanxia
    Shi, Ouyan
    Cai, Chunquan
    [J]. PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 490 - 494
  • [5] Profile hidden Markov models
    Eddy, SR
    [J]. BIOINFORMATICS, 1998, 14 (09) : 755 - 763
  • [6] Predicting protein structure using hidden Markov models
    Karplus, K
    Sjölander, K
    Barrett, C
    Cline, M
    Haussler, D
    Hughey, R
    Holm, L
    Sander, C
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1997, : 134 - 139
  • [7] Predicting Future Traffic using Hidden Markov Models
    Chen, Zhitang
    Wen, Jiayao
    Geng, Yanhui
    [J]. 2016 IEEE 24TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2016,
  • [8] Masquerade detection using profile hidden Markov models
    Huang, Lin
    Stamp, Mark
    [J]. COMPUTERS & SECURITY, 2011, 30 (08) : 732 - 747
  • [9] Riboswitch Detection Using Profile Hidden Markov Models
    Payal Singh
    Pradipta Bandyopadhyay
    Sudha Bhattacharya
    A Krishnamachari
    Supratim Sengupta
    [J]. BMC Bioinformatics, 10
  • [10] Riboswitch Detection Using Profile Hidden Markov Models
    Singh, Payal
    Bandyopadhyay, Pradipta
    Bhattacharya, Sudha
    Krishnamachari, A.
    Sengupta, Supratim
    [J]. BMC BIOINFORMATICS, 2009, 10