Fluid-Structure Interaction Simulation of a Coriolis Mass Flowmeter Using a Lattice Boltzmann Method

被引:8
|
作者
Haussmann, Marc [1 ]
Reinshaus, Peter [2 ]
Simonis, Stephan [3 ,4 ]
Nirschl, Hermann [5 ]
Krause, Mathias J. [3 ,4 ,5 ]
机构
[1] Cloudfluid GmbH, D-76131 Karlsruhe, Germany
[2] Rota Yokogawa GmbH & Co KG, D-79664 Wehr, Germany
[3] Karlsruhe Inst Technol, Lattice Boltzmann Res Grp, D-76131 Karlsruhe, Germany
[4] Karlsruhe Inst Technol, Inst Appl & Numer Math, D-76131 Karlsruhe, Germany
[5] Karlsruhe Inst Technol, Inst Mech Proc Engn & Mech, D-76131 Karlsruhe, Germany
关键词
open source; lattice Boltzmann methods; fluid-structure interaction; OpenLB; Elmer; MODELS; METERS;
D O I
10.3390/fluids6040167
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we use a fluid-structure interaction (FSI) approach to simulate a Coriolis mass flowmeter (CMF). The fluid dynamics is calculated by the open-source framework OpenLB, based on the lattice Boltzmann method (LBM). For the structural dynamics we employ the open-source software Elmer, an implementation of the finite element method (FEM). A staggered coupling approach between the two software packages is presented. The finite element mesh is created by the mesh generator Gmsh to ensure a complete open source workflow. The Eigenmodes of the CMF, which are calculated by modal analysis, are compared with measurement data. Using the estimated excitation frequency, a fully coupled, partitioned, FSI simulation is applied to simulate the phase shift of the investigated CMF design. The calculated phase shift values are in good agreement to the measurement data and verify the suitability of the model to numerically describe the working principle of a CMF.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Fluid-structure interaction analysis of coriolis mass flowmeter
    Huang, Tian-Xing
    Reny, Jian-Xin
    Zhangz, Pei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (14-16):
  • [2] The Lattice Boltzmann Method for Fluid-Structure Interaction Phenomena
    Geller, S.
    Janssen, C.
    Krafczyk, M.
    Kollmannsberger, S.
    Rank, E.
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, GRID AND CLOUD COMPUTING FOR ENGINEERING, 2011, 95
  • [3] Fluid-structure interaction with the entropic lattice Boltzmann method
    Dorschner, B.
    Chikatamarla, S. S.
    Karlin, I. V.
    [J]. PHYSICAL REVIEW E, 2018, 97 (02)
  • [4] Fluid-structure interaction method using immersed boundary and lattice Boltzmann method
    Liu, Ketong
    Tang, Aiping
    Liu, Yuejun
    Wang, Nan
    [J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (01): : 61 - 66
  • [5] Lattice Boltzmann method for fluid-structure interaction in compressible flow
    Bhadauria, Abhimanyu
    Dorschner, Benedikt
    Karlin, Ilya
    [J]. PHYSICS OF FLUIDS, 2021, 33 (10)
  • [6] A Robust Immersed Boundary-Lattice Boltzmann Method for Simulation of Fluid-Structure Interaction Problems
    Wu, Jie
    Wu, Jing
    Zhan, Jiapu
    Zhao, Ning
    Wang, Tongguang
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (01) : 156 - 178
  • [7] A Lattice Boltzmann Based Immersed Boundary Method for Fluid-Structure Interaction
    Yang, J. F.
    Wang, Z. D.
    Wei, Y. K.
    Qian, Y. H.
    [J]. SIXTH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS (ICNM-VI), 2013, : 261 - 264
  • [8] An immersed interface-lattice Boltzmann method for fluid-structure interaction
    Qin, Jianhua
    Kolahdouz, Ebrahim M.
    Griffith, Boyce E.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 428
  • [9] Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods
    Krafczyk, M
    Tölke, J
    Rank, E
    Schulz, M
    [J]. COMPUTERS & STRUCTURES, 2001, 79 (22-25) : 2031 - 2037
  • [10] An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries
    Owen, D. R. J.
    Leonardi, C. R.
    Feng, Y. T.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (1-5) : 66 - 95