An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries

被引:136
|
作者
Owen, D. R. J. [1 ]
Leonardi, C. R. [1 ]
Feng, Y. T. [1 ]
机构
[1] Swansea Univ, Civil & Computat Engn Dept, Swansea SA2 8PP, W Glam, Wales
关键词
lattice Boltzmann method; discrete element method; immersed moving boundary; fluid structure interaction; multibody coupling; FINITE/DISCRETE ELEMENT SIMULATION; SHOT PEENING PROCESSES; PARTICULATE SUSPENSIONS; NUMERICAL SIMULATIONS; FINITE-ELEMENT; FLOW; EQUATION; MODEL; COMPUTATIONS; CYLINDER;
D O I
10.1002/nme.2985
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a serial computational framework that hydrodynamically couples the lattice Boltzmann method (LBM) and the discrete element method (DEM) for the solution of particle suspension problems in two and three dimensions. The single-relaxation-time Bhatnagar-Gross-Krook (LBGK) form of the lattice Boltzmann equation is employed with an immersed moving boundary method for the fluid-structure interaction. Similar algorithms have been previously reported in the literature, however, this work deliberately utilizes solution options that minimize the computational overheads of the framework to facilitate simulations of multibody structural fields in large fluid domains. In particular, mixed boundary conditions are employed which combine the simple bounce-back technique with the immersed moving boundary method, and the relatively inexpensive D3Q15 lattice is employed for 3D solutions. The fundamentals of the LBM are briefly discussed followed by a review of the coupling techniques available for FSI using the LBM. Options for mapping solid obstacles to the LBM grid are presented and an algorithm for automatic, dynamic subcycling of the two explicit solution schemes is outlined. The LBM-DEM framework is then validated and benchmarked against previously published LBM results, with comments made where appropriate on the comparative accuracy and convergence characteristics. Finally, a multi-particle suspension simulation is presented to qualitatively assess the performance of the framework when a large number of dynamic contacts exist. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:66 / 95
页数:30
相关论文
共 50 条
  • [1] Lattice Boltzmann Analysis of Fluid-Structure Interaction with Moving Boundaries
    De Rosis, Alessandro
    Falcucci, Giacomo
    Ubertini, Stefano
    Ubertini, Francesco
    Succi, Sauro
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (03) : 823 - 834
  • [2] Fluid-structure interaction method using immersed boundary and lattice Boltzmann method
    Liu, Ketong
    Tang, Aiping
    Liu, Yuejun
    Wang, Nan
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (01): : 61 - 66
  • [3] A Lattice Boltzmann Based Immersed Boundary Method for Fluid-Structure Interaction
    Yang, J. F.
    Wang, Z. D.
    Wei, Y. K.
    Qian, Y. H.
    SIXTH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS (ICNM-VI), 2013, : 261 - 264
  • [4] An immersed interface-lattice Boltzmann method for fluid-structure interaction
    Qin, Jianhua
    Kolahdouz, Ebrahim M.
    Griffith, Boyce E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 428
  • [5] A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction
    Hao, Jian
    Zhu, Luoding
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 185 - 193
  • [6] COMPUTATIONAL STUDY OF IMMERSED BOUNDARY - LATTICE BOLTZMANN METHOD FOR FLUID-STRUCTURE INTERACTION
    Eichler, Pavel
    Fucik, Radek
    Straka, Robert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 819 - 833
  • [7] Analysis of the immersed boundary method for turbulent fluid-structure interaction with Lattice Boltzmann method
    Cheylan, Isabelle
    Fringand, Tom
    Jacob, Jerome
    Favier, Julien
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 492
  • [8] The Lattice Boltzmann Method for Fluid-Structure Interaction Phenomena
    Geller, S.
    Janssen, C.
    Krafczyk, M.
    Kollmannsberger, S.
    Rank, E.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, GRID AND CLOUD COMPUTING FOR ENGINEERING, 2011, 95
  • [9] Fluid-structure interaction with the entropic lattice Boltzmann method
    Dorschner, B.
    Chikatamarla, S. S.
    Karlin, I. V.
    PHYSICAL REVIEW E, 2018, 97 (02)
  • [10] A Robust Immersed Boundary-Lattice Boltzmann Method for Simulation of Fluid-Structure Interaction Problems
    Wu, Jie
    Wu, Jing
    Zhan, Jiapu
    Zhao, Ning
    Wang, Tongguang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (01) : 156 - 178