The robust finite-volume schemes for modeling nonclassical surface reactions
被引:3
|
作者:
Ciegis, Raimondas
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Gediminas Tech Univ, Sauletekio Ave 11, LT-11203 Vilnius, LithuaniaVilnius Gediminas Tech Univ, Sauletekio Ave 11, LT-11203 Vilnius, Lithuania
Ciegis, Raimondas
[1
]
Katauskis, Pranas
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Univ, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, LithuaniaVilnius Gediminas Tech Univ, Sauletekio Ave 11, LT-11203 Vilnius, Lithuania
Katauskis, Pranas
[2
]
Skakauskas, Vladas
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Univ, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, LithuaniaVilnius Gediminas Tech Univ, Sauletekio Ave 11, LT-11203 Vilnius, Lithuania
Skakauskas, Vladas
[2
]
机构:
[1] Vilnius Gediminas Tech Univ, Sauletekio Ave 11, LT-11203 Vilnius, Lithuania
[2] Vilnius Univ, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
system of nonlinear PDEs;
finite-volume method;
conservative approximation;
heterogeneous reactions;
surface diffusion;
spillover;
SUPPORTED CATALYSTS;
DIFFUSION;
KINETICS;
D O I:
10.15388/NA.2018.2.6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A coupled system of nonlinear parabolic PDEs arising in modeling of surface reactions with piecewise continuous kinetic data is studied. The nonclassic conjugation conditions are used at the surface of the discontinuity of the kinetic data. The finite-volume technique and the backward Euler method are used to approximate the given mathematical model. The monotonicity, conservativity, positivity of the approximations are investigated by applying these finite-volume schemes for simplified subproblems, which inherit main new nonstandard features of the full mathematical model. Some results of numerical experiments are discussed.