3D visualization in multifocus fluorescence microscopy

被引:2
|
作者
Alonso, Julia R. [1 ]
Silva, Alejandro [1 ]
Arocena, Miguel [2 ,3 ,4 ]
机构
[1] Univ Republica, Fac Ingn, Inst Fis, J Herrera y Reissig 565, Montevideo 11300, Uruguay
[2] Univ Republica, Fac Ciencias, Secc Biol Celular, Igua 4225, Montevideo 11400, Uruguay
[3] Inst Invest Biol Clemente Estable, Dept Genom, Av Italia 3318, Montevideo 11600, Uruguay
[4] Univ Republica, Fac Odontol, Catedra Bioquim & Biofis, Las Heras 1925, Montevideo 11600, Uruguay
关键词
fluorescence microscopy; three-dimensional visualization; stereoscopic pairs; computational optical imaging; RECONSTRUCTION;
D O I
10.1117/12.2520067
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Limited depth-of-field can be overcome through computational optical imaging. In this work, a custom built fluorescence microscope with a focus electrically tunable lens is used for the acquisition of a multifocus image sequence (z-stack) of a 3D fluorescent sample. Image registration between the acquired images is often needed as a preprocessing step before the reconstruction of images with new characteristics. Then a multifocus image fusion algorithm is implemented to accomplish all-in-focus image reconstruction from the registered z-stack. Also computational perspective shifts that allow to the reconstruction of stereoscopic pairs of the sample and its three-dimensional visualization are implemented.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Fast 3D super-resolution fluorescence microscopy
    Pastrana, Erika
    [J]. NATURE METHODS, 2011, 8 (01) : 46 - 46
  • [32] 3D fluorescence microscopy data synthesis for segmentation and benchmarking
    Eschweiler, Dennis
    Rethwisch, Malte
    Jarchow, Mareike
    Koppers, Simon
    Stegmaier, Johannes
    [J]. PLOS ONE, 2021, 16 (12):
  • [33] 3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction
    Huang, Jiaqing
    Sun, Mingzhai
    Gumpper, Kristyn
    Chi, Yuejie
    Ma, Jianjie
    [J]. BIOMEDICAL OPTICS EXPRESS, 2015, 6 (03): : 902 - 917
  • [34] New microscopy for the 3D visualization of large samples with highest resolution
    Dodt, H. -U.
    [J]. MICROSCOPY APPLIED TO BIOPHOTONICS, 2014, 181 : 67 - 77
  • [35] Multiplexed phase-space imaging for 3D fluorescence microscopy
    Liu, Hsiou-Yuan
    Zhong, Jingshan
    Waller, Laura
    [J]. OPTICS EXPRESS, 2017, 25 (13): : 14986 - 14995
  • [36] Quantitative Analysis of Autophagy using Advanced 3D Fluorescence Microscopy
    Changou, Chun A.
    Wolfson, Deanna L.
    Ahluwalia, Balpreet Singh
    Bold, Richard J.
    Kung, Hsing-Jien
    Chuang, Frank Y. S.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (75):
  • [37] PURE-LET DECONVOLUTION OF 3D FLUORESCENCE MICROSCOPY IMAGES
    Li, Jizhou
    Luisier, Florian
    Blu, Thierry
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 723 - 727
  • [38] Quantifying cellular interaction dynamics in 3D fluorescence microscopy data
    Frederick Klauschen
    Masaru Ishii
    Hai Qi
    Marc Bajénoff
    Jackson G Egen
    Ronald N Germain
    Martin Meier-Schellersheim
    [J]. Nature Protocols, 2009, 4 : 1305 - 1311
  • [39] Adaptive correction technique for 3D reconstruction of fluorescence microscopy images
    Guan, Y. Q.
    Cai, Y. Y.
    Zhang, X.
    Lee, Y. T.
    Opas, M.
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2008, 71 (02) : 146 - 157
  • [40] 3D printed biaxial stretcher compatible with live fluorescence microscopy
    Shiwarski, Daniel J.
    Tashman, Joshua W.
    Eaton, Amity F.
    Apodaca, Gerard
    Feinberg, Adam W.
    [J]. HARDWAREX, 2020, 7