Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity

被引:231
|
作者
Hokmabadi, Mohammad P. [1 ]
Schumer, Alexander [1 ,2 ]
Christodoulides, Demetrios N. [1 ]
Khajavikhan, Mercedeh [1 ,3 ]
机构
[1] Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32816 USA
[2] Vienna Univ Technol TU Wien, Inst Theoret Phys, Vienna, Austria
[3] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
基金
美国国家科学基金会;
关键词
EXCEPTIONAL POINT;
D O I
10.1038/s41586-019-1780-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gyroscopes are essential to many diverse applications associated with navigation, positioning and inertial sensing'. In general, most optical gyroscopes rely on the Sagnac effect-a relativistically induced phase shift that scales linearly with the rotational velocity(2,3). In ring laser gyroscopes (RLGs), this shift manifests as a resonance splitting in the emission spectrum, which can be detected as a beat frequency(4). The need for ever more precise RLGs has fuelled research activities aimed at boosting the sensitivity of RLGs beyond the limits dictated by geometrical constraints, including attempts to use either dispersive or nonlinear effects(5-8). Here we establish and experimentally demonstrate a method using non-Hermitian singularities, or exceptional points, to enhance the Sagnac scale factor(9-13). By exploiting the increased rotational sensitivity of RLGs in the vicinity of an exceptional point, we enhance the resonance splitting by up to a factor of 20. Our results pave the way towards the next generation of ultrasensitive and compact RLGs and provide a practical approach for the development of other classes of integrated sensor.
引用
收藏
页码:70 / +
页数:6
相关论文
共 50 条
  • [31] Non-Hermitian Optomechanics
    Primo, Andre G.
    Carvalho, Natalia C.
    Kersul, Cane M.
    Wiederhecker, Gustavo S.
    Frateschi, Newton C.
    Alegre, Thiago P. M.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [32] Diffraction losses reduction in multiapertured non-Hermitian laser resonators
    Brunel, M
    Ropars, G
    LeFloch, A
    Bretenaker, F
    PHYSICAL REVIEW A, 1997, 55 (01): : 781 - 786
  • [33] True exponentially enhanced sensing in the non-Hermitian topological phase
    Zhang, Rui
    Chen, Tian
    APPLIED PHYSICS LETTERS, 2024, 124 (17)
  • [34] Nonlinear non-Hermitian higher-order topological laser
    Ezawa, Motohiko
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [35] Complex skin modes in non-Hermitian coupled laser arrays
    Yuzhou G. N. Liu
    Yunxuan Wei
    Omid Hemmatyar
    Georgios G. Pyrialakos
    Pawel S. Jung
    Demetrios N. Christodoulides
    Mercedeh Khajavikhan
    Light: Science & Applications, 11
  • [36] Anomalous Floquet non-Hermitian skin effect in a ring resonator lattice
    Gao, He
    Xue, Haoran
    Gu, Zhongming
    Li, Linhu
    Zhu, Weiwei
    Su, Zhongqing
    Zhu, Jie
    Zhang, Baile
    Chong, Y. D.
    PHYSICAL REVIEW B, 2022, 106 (13)
  • [37] Non-Hermitian zero-mode laser in a nanophotonic trimer
    Ji, Kaiwen
    Garbin, Bruno
    Hedir, Melissa
    Levenson, Juan A.
    Yacomotti, Alejandro
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [38] Multistate non-Hermitian Floquet dynamics in short laser pulses
    Day, H.C.
    Piraux, Bernard
    Potvliege, R.M.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2000, 61 (03):
  • [39] Multistate non-Hermitian Floquet dynamics in short laser pulses
    Day, HC
    Piraux, B
    Potvliege, RM
    PHYSICAL REVIEW A, 2000, 61 (03): : 4
  • [40] Comparing Hermitian and Non-Hermitian Quantum Electrodynamics
    Southall, Jake
    Hodgson, Daniel
    Purdy, Robert
    Beige, Almut
    SYMMETRY-BASEL, 2022, 14 (09):