Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

被引:32
|
作者
Dong, Lin [1 ]
Prasad, M. G. [1 ]
Fisher, Frank T. [1 ]
机构
[1] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA
关键词
frequency tuning; energy harvesting; vibration; MICROSYSTEMS; GENERATOR; DESIGN;
D O I
10.1088/0964-1726/25/6/065019
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effect of the piezoelectric hysteretic behavior on the vibration-based energy harvesting
    Silva, Luciana L.
    Savi, Marcelo A.
    Monteiro, Paulo C., Jr.
    Netto, Theodoro A.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2013, 24 (10) : 1278 - 1285
  • [22] VIBRATION-BASED ENERGY HARVESTING SYSTEMS FOR ON-BOARD APPLICATIONS
    Nagode, C.
    Ahmadian, M.
    Taheri, S.
    PROCEEDINGS OF THE ASME/ASCE/IEEE JOINT RAIL CONFERENCE, 2012, : 333 - 337
  • [23] Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System
    Wong, Chin Hong
    Dahari, Zuraini
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (03) : 1869 - 1882
  • [24] THE EFFECT OF NONLINEAR PIEZOELECTRIC COUPLING ON VIBRATION-BASED ENERGY HARVESTING
    Triplett, Angela
    Quinn, D. Dane
    IMECE 2008: MECHANICAL SYSTEMS AND CONTROL, VOL 11, 2009, : 887 - 892
  • [25] Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System
    Chin Hong Wong
    Zuraini Dahari
    Journal of Electronic Materials, 2017, 46 : 1869 - 1882
  • [26] Piezoelectric Vibration-Based Energy Harvesting Enhancement Exploiting Nonsmoothness
    Ai, Rodrigo
    Monteiro, Luciana L. S.
    Monteiro Jr, Paulo Cesar C.
    Pacheco, Pedro M. C. L.
    Savi, Marcelo A.
    ACTUATORS, 2019, 8 (01)
  • [27] COMPARING LINEAR AND ESSENTIALLY NONLINEAR VIBRATION-BASED ENERGY HARVESTING
    Quinn, D. Dane
    Triplett, Angela L.
    Bergman, Lawrence A.
    Vakakis, Alexander F.
    SMASIS 2008: PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS - 2008, VOL 2, 2009, : 377 - 378
  • [28] Synergistic use of smart materials for vibration-based energy harvesting
    L.L. Silva
    S.A. Oliveira
    P.M.C.L. Pacheco
    M.A. Savi
    The European Physical Journal Special Topics, 2015, 224 : 3005 - 3021
  • [29] Synergistic use of smart materials for vibration-based energy harvesting
    Silva, L. L.
    Oliveira, S. A.
    Pacheco, P. M. C. L.
    Savi, M. A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (14-15): : 3005 - 3021
  • [30] Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
    Quinn, D. Dane
    Triplett, Angela L.
    Bergman, Lawrence A.
    Vakakis, Alexander F.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2011, 133 (01):