Codes over Z4

被引:0
|
作者
Helleseth, T [1 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One recent direction in coding theory has been to study linear codes over the alphabet Z(4) and apply the Gray map from Z(4) to binary pairs to obtain binary nonlinear codes better than comparable binary linear codes. This connection between linear codes over Z(4) and nonlinear binary codes was also the breakthrough in solving an old puzzle of the apparent duality between the nonlinear Kerdock and Preparata codes. We present a description of this puzzle and a brief introduction to codes over Z(4).
引用
收藏
页码:47 / 55
页数:9
相关论文
共 50 条
  • [1] Codes over Z4 + νZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    [J]. 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 422 - 427
  • [2] Greedy Codes over Z4
    Guenda, Kenza
    Gulliver, T. Aaron
    Sheikholeslam, S. Arash
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [3] On LCD codes over Z4
    Bhowmick, Sanjit
    Bagchi, Satya
    Bandi, Ramakrishna
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [4] Shadow codes over Z4
    Dougherty, ST
    Harada, M
    Solé, P
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (04) : 507 - 529
  • [5] Skew cyclic codes over Z4
    Suprijanto, Djoko
    Tang, Hopein Christofen
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [6] Generalized BCH codes over Z4
    Yue, DW
    Qian, XR
    Dong, H
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2000, 9 (02) : 159 - 162
  • [7] A study on structure of codes over Z4
    Karthick, G.
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 567 - 578
  • [8] ON THE LINEAR CODES OVER THE RING Z4
    Dertli, Abdullah
    Cengellenmis, Yasemin
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 809 - 823
  • [9] Negacyclic and cyclic codes over Z4
    Wolfmann, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2527 - 2532
  • [10] On double cyclic codes over Z4
    Gao, Jian
    Shi, Minjia
    Wu, Tingting
    Fu, Fang-Wei
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2016, 39 : 233 - 250