Molten metal flux growth and properties of CrSi2

被引:11
|
作者
Shishido, T
Okada, S
Ishizawa, Y
Kudou, K
Iizumi, K
Sawada, Y
Horiuchi, H
Inaba, K
Sekiguchi, T
Ye, J
Miyashita, S
Nomura, A
Sugawara, T
Obara, K
Oku, M
Fujiwara, K
Ujihara, T
Sazaki, G
Usami, N
Kohiki, S
Kawazoe, Y
Nakajima, K
机构
[1] Tohoku Univ, Mat Res Inst, Aoba Ku, Sendai, Miyagi 9808577, Japan
[2] Kokushikan Univ, Fac Engn, Dept Civil Engn, Tokyo 1540017, Japan
[3] Iwaki Meisei Univ, Dept Environm Sci, Iwaki, Fukushima 9708551, Japan
[4] Kanagawa Univ, Fac Engn, Kanagawa Ku, Yokohama, Kanagawa 2218686, Japan
[5] Tokyo Inst Polytech, Fac Engn, Atsugi, Kanagawa 2430297, Japan
[6] Hirosaki Univ, Fac Educ, Earth Sci Lab, Hirosaki, Aomori 0368560, Japan
[7] Rigaku Corp, Xray Res Lab, Akishima, Tokyo 1968666, Japan
[8] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[9] Toyama Med & Pharmaceut Univ, Toyama 9300194, Japan
[10] Kyushu Univ Technol, Dept Mat Sci, Kitakyushu, Fukuoka 8048550, Japan
关键词
chromium disilicide; crystal growth; flux method; electrical resistivity; micro-Vickers hardness; oxidation resistivity;
D O I
10.1016/j.jallcom.2004.04.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single crystals of CrSi2 were obtained in the form of hexagonal prisms by the solution growth method using molten tin as a flux. The maximum size of the crystal is about 0.3 mm in diameter and 25 mm in length. The crystal structure of CrSi2 has hexagonal symmetry with space group P6(2)22 and the lattice parameters are a = 0.425(2) nm and c = 0.6375(1) nm, respectively. The crystals are semiconducting. The value of the micro-Vickers hardness for the {1100} face with hexagonal symmetry is 11.2 +/- 0.4 GPa. Weight gain of the crystals heated up to 1473 K in air is negligible. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:319 / 321
页数:3
相关论文
共 50 条
  • [31] Preparation and physical properties of nanosized semiconducting CrSi2 powders
    Lu, JS
    Yang, HB
    Liu, BB
    Han, J
    Zou, GT
    MATERIALS CHEMISTRY AND PHYSICS, 1999, 59 (02) : 101 - 106
  • [32] Structural, electrical, and thermoelectric properties of CrSi2 thin films
    Abd El Qader, Makram
    Venkat, Rama
    Kumar, Ravhi
    Hartmann, Thomas
    Ginobbi, Paolo
    Newman, Nathan
    Singh, Rakesh
    THIN SOLID FILMS, 2013, 545 : 100 - 105
  • [33] Influence of Heat Treatment on the Structure and Thermoelectric Properties of CrSi2
    Solomkin, F. Yu.
    Suvorova, E. I.
    Zaitsev, V. K.
    Novikov, S. V.
    Burkov, A. T.
    Samunin, A. Yu.
    Isachenko, G. N.
    TECHNICAL PHYSICS, 2011, 56 (02) : 305 - 307
  • [34] Microscopic study of electrical properties of CrSi2 nanocrystals in silicon
    László Dózsa
    Štefan Lányi
    Vito Raineri
    Filippo Giannazzo
    Nikolay Gennadevich Galkin
    Nanoscale Research Letters, 6
  • [35] Electronic structure of stressed CrSi2
    Krivosheeva, AV
    Shaposhnikov, VL
    Borisenko, VE
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 101 (1-3): : 309 - 312
  • [36] REACTIVE DEPOSITION EPITAXY OF CRSI2
    VANTOMME, A
    NICOLET, MA
    LONG, RG
    MAHAN, JE
    POOL, FS
    APPLIED SURFACE SCIENCE, 1993, 73 : 146 - 152
  • [37] Thermoelectric properties and stability of nanostructured chromium disilicide CrSi2
    Khalil, M.
    Moll, A.
    Godfroy, M.
    Letrouit-Lebranchu, A.
    Villeroy, B.
    Alleno, E.
    Viennois, R.
    Beaudhuin, M.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (13)
  • [38] CrSi2 crystallites on Si(110)
    Pathiranage, Sameera
    Siriwardane, Edirisuriya M. D.
    Mohottige, Rasika
    Cakir, Deniz
    Oncel, Nuri
    SURFACE SCIENCE, 2021, 703
  • [39] Formation of CrSi2 nanoislands on Si(111)7 × 7 and epitaxial growth of silicon overlayers in Si(111)/CrSi2 nanocrystallites/Si heterostructures
    N. G. Galkin
    T. V. Turchin
    D. L. Goroshko
    S. A. Dotsenko
    E. D. Plekhov
    A. I. Cherednichenko
    Technical Physics, 2007, 52 : 1079 - 1085
  • [40] Elevated rate growth of nanolayers of Cr and CrSi2 on Si(111)
    Plusnin, NI
    Milenin, AP
    Iliyashenko, BM
    Lifshits, VG
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2002, 9-10 : 129 - 145