Feedback min-max model predictive control using robust one-step sets

被引:8
|
作者
Cychowski, Marcin T. [1 ]
O'Mahony, Tom [1 ]
机构
[1] Cork Inst Technol, Dept Elect Engn, Cork, Ireland
关键词
model predictive control; robust control; linear matrix inequality; FORMULATION; STABILITY; SYSTEMS; MPC;
D O I
10.1080/00207720903366049
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A solution to the infinite-horizon min-max model predictive control (MPC) problem of constrained polytopic systems has recently been defined in terms of a sequence of free control moves over a fixed horizon and a state feedback law in the terminal region using a time-varying terminal cost. The advantage of this formulation is the enlargement of the admissible set of initial states without sacrificing local optimality, but this comes at the expense of higher computational complexity. This article, by means of a counterexample, shows that the robust feasibility and stability properties of such algorithms are not, in general, guaranteed when more than one control move is adopted. For this reason, this work presents a novel formulation of min-max MPC based on the concept of within-horizon feedback and robust contractive set theory that ensures robust stability for any choice of the control horizon. A parameter-dependent feedback extension is also proposed and analysed. The effectiveness of the algorithms is demonstrated with two numerical examples.
引用
收藏
页码:813 / 823
页数:11
相关论文
共 50 条
  • [1] Min-max feedback model predictive control with state estimation
    Jia, D
    Krogh, B
    [J]. ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 262 - 267
  • [2] A decomposition algorithm for feedback min-max model predictive control
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    [J]. 2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5126 - 5131
  • [3] A decomposition algorithm for feedback min-max model predictive control
    Munoz de la Pena, D.
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1688 - 1692
  • [4] Robustly stable feedback min-max model predictive control
    Kerrigan, EC
    Maciejowski, JM
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3490 - 3495
  • [5] Min-max feedback model predictive control for distributed control with communication
    Jia, D
    Krogh, B
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 4507 - 4512
  • [6] Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution
    Kerrigan, EC
    Maciejowski, JM
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (04) : 395 - 413
  • [7] Min-max feedback model predictive control for constrained linear systems
    Scokaert, POM
    Mayne, DQ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (08) : 1136 - 1142
  • [8] Robust Min-Max Model Predictive Vehicle Platooning With Causal Disturbance Feedback
    Zhou, Jianshan
    Tian, Daxin
    Sheng, Zhengguo
    Duan, Xuting
    Qu, Guixian
    Zhao, Dezong
    Cao, Dongpu
    Shen, Xuemin
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15878 - 15897
  • [9] Robust min-max model predictive control of linear systems with constraints
    Zeman, J
    Rohal'-Ilkiv, B
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 930 - 935
  • [10] Linearized min-max robust model predictive control: Application to the control of a bioprocess
    Benattia, S. E.
    Tebbani, S.
    Dumur, D.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (01) : 100 - 120