Photoluminescence of rhodamine 6G in plasmonic field of Au nanoparticles: Temperature effects

被引:13
|
作者
Yeshchenko, Oleg A. [1 ]
Bondarchuk, Illya S. [1 ]
Kozachenko, Viktor V. [1 ]
Losytskyy, Mykhaylo Yu. [1 ]
机构
[1] Tares Shevchenko Natl Univ Kyiv, Dept Phys, UA-01601 Kiev, Ukraine
关键词
Gold nanoparticles; Surface plasmon resonance; Rhodamine 6G photoluminescence enhancement; Temperature effects; ENHANCED RAMAN-SPECTROSCOPY; SMALL SILVER PARTICLES; OPTICAL-PROPERTIES; GOLD NANOPARTICLES; ENERGY-TRANSFER; ABSORPTION-SPECTRA; AQUEOUS-SOLUTION; NOBLE-METALS; TUMOR-CELLS; SCATTERING;
D O I
10.1016/j.jlumin.2014.10.018
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Influence of temperature on the photoluminescence of rhodamine 6G deposited on 2D array of the gold nanoparticles was studied in the temperature range of 78-278 K. The factor of surface plasmonic enhancement of rhodamine luminescence was found to decrease monotonically with increasing temperature. Electron-phonon scattering and thermal expansion of the gold nanoparticles were considered as two competing physical mechanisms of the temperature dependence of plasmonic enhancement factor. The calculations showed the significant prevalence of the electron-phonon scattering. The temperature induced increase of the scattering rate leads to higher plasmon damping that causes the decrease of plasmonic enhancement of rhodamine 6G luminescence. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:294 / 300
页数:7
相关论文
共 50 条
  • [21] The influence of silver nanoparticles on the stimulated luminescence of rhodamine 6G solutions
    N. Kh. Ibrayev
    A. K. Zeinidenov
    A. K. Aimukhanov
    Optics and Spectroscopy, 2014, 117 : 540 - 544
  • [22] Quantitative analysis of surface enhanced Raman spectroscopy of Rhodamine 6G using a composite graphene and plasmonic Au nanoparticle substrate
    Goul, Ryan
    Das, Susobhan
    Liu, Qingfeng
    Xin, Melisa
    Lu, Rongtao
    Hui, R.
    Wu, Judy Z.
    CARBON, 2017, 111 : 386 - 392
  • [23] Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects
    Zehentbauer, Florian M.
    Moretto, Claudia
    Stephen, Ryan
    Thevar, Thangavel
    Gilchrist, John R.
    Pokrajac, Dubravka
    Richard, Katherine L.
    Kiefer, Johannes
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2014, 121 : 147 - 151
  • [24] ELECTROCHROMISM OF PERYLENE AND RHODAMINE 6G
    HILL, AR
    MALLEY, MM
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1971, 40 (02) : 428 - &
  • [25] Conical bubble photoluminescence from rhodamine 6G in 1,2-propanediol
    He Shou-Jie
    Ai Xi-Cheng
    Dong Li-Fang
    Chen De-Ying
    Wang Qi
    Li Xue-Chen
    Zhang Jian-Ping
    Wang Long
    CHINESE PHYSICS, 2006, 15 (07): : 1615 - 1620
  • [26] Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles
    Zhao, Jing
    Jensen, Lasse
    Sung, Jiha
    Zou, Shengli
    Schatz, George C.
    Van Duyne, Richard P.
    Journal of the American Chemical Society, 2007, 129 (24): : 7647 - 7656
  • [27] Effective random laser action in Rhodamine 6G solution with Al nanoparticles
    Yang, Liling
    Feng, Guoying
    Yi, Jiayu
    Yao, Ke
    Deng, Guoliang
    Zhou, Shouhuan
    APPLIED OPTICS, 2011, 50 (13) : 1816 - 1821
  • [28] TiO2 NANOPARTICLES INFLUENCE ON RHODAMINE 6G DROPLET EMISSION
    Boni, M.
    Staicu, Angela
    Andrei, I. R.
    Smarandache, Adriana
    Nastasa, V.
    Saponjic, Z.
    Pascu, M. L.
    ROMANIAN REPORTS IN PHYSICS, 2018, 70 (04)
  • [29] Nanocomposites containing embedded superparamagnetic iron oxide nanoparticles and rhodamine 6G
    Makovec, Darko
    Campelj, Stanislav
    Bele, Marjan
    Maver, Uros
    Zorko, Milena
    Drofenik, Miha
    Jamnik, Janko
    Gaberscek, Miran
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 334 (1-3) : 74 - 79
  • [30] Properties of lasing in Rhodamine 6G solutions with nanoparticles free of plasmon resonance
    Donchenko V.A.
    Zemlyanov A.A.
    Zinoviev M.M.
    Panamarev N.S.
    Trifonova A.V.
    Kharenkov V.A.
    Atmospheric and Oceanic Optics, 2016, 29 (5) : 452 - 456