The lattice of permutations is bounded

被引:12
|
作者
Caspard, N [1 ]
机构
[1] Univ Paris Sud, LRI, F-91405 Orsay, France
关键词
arrows relations; A-table; bounded lattice; lexicographical order; permutation;
D O I
10.1142/S0218196700000182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to show that the lattice S-n of permutations on a n-element set is bounded. This result strengthens the semi-distributive nature of the lattice S-n. To prove this property, we use a characterization of the class of bounded lattices in terms of arrows relations defined on the join-irreducible elements of a lattice or, more precisely, in terms of the A-table of a lattice.
引用
收藏
页码:481 / 489
页数:9
相关论文
共 50 条
  • [41] Bounded lattice fuzzy coincidence theorems with applications
    Kanwal, Shazia
    Azam, Akbar
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) : 1531 - 1545
  • [42] SKEW TABLEAUX, LATTICE PATHS, AND BOUNDED PARTITIONS
    SHI, JY
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 63 (01) : 79 - 89
  • [43] Orders of Bounded and Strongly Unbounded Lattice Type
    Fahimeh Sadat Fotouhi
    Alex Martsinkovsky
    Shokrollah Salarian
    [J]. Algebras and Representation Theory, 2020, 23 : 1983 - 2011
  • [45] Symmetries on the Lattice of k-Bounded Partitions
    Chris Berg
    Nathan Williams
    Mike Zabrocki
    [J]. Annals of Combinatorics, 2016, 20 : 251 - 281
  • [46] Ordinal sums of triangular norms on a bounded lattice
    Ouyang, Yao
    Zhang, Hua-Peng
    Baets, Bernard De
    [J]. FUZZY SETS AND SYSTEMS, 2021, 408 : 1 - 12
  • [47] On Nilpotent Matrices over Bounded Distributive Lattice
    Song Li-Xia
    [J]. IITSI 2009: SECOND INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS, 2009, : 51 - 53
  • [48] Orders of Bounded and Strongly Unbounded Lattice Type
    Fotouhi, Fahimeh Sadat
    Martsinkovsky, Alex
    Salarian, Shokrollah
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (05) : 1983 - 2011
  • [49] CALCULATION OF POINT LATTICE POTENTIAL OF A BOUNDED CRYSTAL
    VENDIK, OG
    [J]. PHYSICA STATUS SOLIDI, 1968, 28 (02): : 789 - &
  • [50] f-Aggregation Operators on a Bounded Lattice
    Mehenni, A.
    Zedam, L.
    Benseba, B.
    [J]. AZERBAIJAN JOURNAL OF MATHEMATICS, 2022, 12 (01): : 109 - 128