Estimating Hurst exponent with wavelet packet

被引:0
|
作者
Wang, Zhiguo [1 ]
Guo, Dechun [1 ]
Li, Xi
Fei, Yuanchun [1 ]
机构
[1] Beijing Inst Technol, Sch Informat Sci, Beijing 100081, Peoples R China
关键词
fBm; Hurst exponent; R/S; wavelet packet;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Applied in many areas, from original hydrology to modern computer networking, Hurst exponent provides us with an indicator that the analyzed data is a completely random process or has underlying trends. But a good estimation of Hurst exponent remains complicated as R/S algorithm shows. Recurring to fractal mathematics, especially the research on fractal Brownian motion (fBm), wavelet packet transform is introduced to estimate Hurst exponent. Compared with wavelet transform and other estimating methods, the wavelet packet algorithm is found able to provide more accurate result. And another advantage of wavelet packet is the extensive choice of available analyzing wavelet filter functions.
引用
收藏
页码:105 / +
页数:2
相关论文
共 50 条
  • [1] Wavelet packet computation of the Hurst exponent
    Jones, CL
    Lonergan, GT
    Mainwaring, DE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10): : 2509 - 2527
  • [2] Determination of the Hurst exponent by use of wavelet transforms
    Simonsen, I
    Hansen, A
    Nes, OM
    [J]. PHYSICAL REVIEW E, 1998, 58 (03): : 2779 - 2787
  • [3] Wavelet packet based Hurst parameter estimation
    Cheng, H
    Shao, ZQ
    Fang, YQ
    [J]. 8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS: COMMUNICATION AND NETWORK SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 276 - 281
  • [4] Estimating Hurst Index Based On Wavelet
    Wang, Lele
    Bian, Baojun
    Yuan, Guiqiu
    [J]. 2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 9860 - +
  • [5] Method for Estimating the Hurst Exponent of Fractional Brownian Motion
    Savitskii, A. V.
    [J]. DOKLADY MATHEMATICS, 2019, 100 (03) : 564 - 567
  • [6] Method for Estimating the Hurst Exponent of Fractional Brownian Motion
    A. V. Savitskii
    [J]. Doklady Mathematics, 2019, 100 : 564 - 567
  • [7] Wavelet-Based Estimation of Hurst Exponent Using Neural Network
    Kirichenko, Lyudmyla
    Pavlenko, Kyrylo
    Khatsko, Daryna
    [J]. 2022 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), 2022, : 40 - 43
  • [8] Modified periodogram method for estimating the Hurst exponent of fractional Gaussian noise
    Liu, Yingjun
    Liu, Yong
    Wang, Kun
    Jiang, Tianzi
    Yang, Lihua
    [J]. PHYSICAL REVIEW E, 2009, 80 (06)
  • [9] Comparison of Hurst Exponent Estimating Based on Fractional Brownian Motion Sequence
    Chen Peng
    Wan Li
    Hu Xuyi
    [J]. CONTEMPORARY INNOVATION AND DEVELOPMENT IN STATISTICAL SCIENCE, 2012, : 81 - 85
  • [10] Wavelet based hurst exponent and fractal dimensional analysis of Saudi climatic dynamics
    Rehman, S.
    Siddiqi, A. H.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1081 - 1090