Deformation quantization of Leibniz algebras

被引:18
|
作者
Dherin, Benoit [1 ]
Wagemann, Friedrich [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Nantes, F-44035 Nantes, France
关键词
Leibniz algebra; Integration; BCH-formula; Deformation quantization; Non-skew-symmetric Poisson manifolds; POISSON; BRACKETS;
D O I
10.1016/j.aim.2014.10.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the local integration of a Leibniz algebra l) using a Baker-Campbell-Hausdorff type formula in order to deformation quantize its linear dual h*. More precisely, we define a natural rack product on the set of exponential functions on h* which extends to a rack action on C-infinity (h*). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:21 / 48
页数:28
相关论文
共 50 条
  • [11] Topological Hopf algebras, quantum groups and deformation quantization
    Bonneau, P
    Sternheimer, D
    [J]. HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 55 - 70
  • [12] Strict deformation quantization of locally convex algebras and modules
    Lechner, Gandalf
    Waldmann, Stefan
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 99 : 111 - 144
  • [13] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [14] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Stitzinger, Ernie
    White, Ashley
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 627 - 633
  • [15] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Ernie Stitzinger
    Ashley White
    [J]. Algebras and Representation Theory, 2018, 21 : 627 - 633
  • [16] Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras
    Zhang, Wenchao
    Yavich, Roman
    Belov-Kanel, Alexei
    Razavinia, Farrokh
    Elishev, Andrey
    Yu, Jietai
    [J]. MATHEMATICS, 2022, 10 (22)
  • [17] F-manifold algebras and deformation quantization via pre-Lie algebras
    Liu, Jiefeng
    Sheng, Yunhe
    Bai, Chengming
    [J]. JOURNAL OF ALGEBRA, 2020, 559 : 467 - 495
  • [18] NONCOMMUTATIVE POISSON BRACKETS ON LODAY ALGEBRAS AND RELATED DEFORMATION QUANTIZATION
    Uchino, Kyousuke
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2013, 11 (01) : 93 - 108
  • [19] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2048 - 2064
  • [20] Subinvariance in Leibniz algebras
    Misra, Kailash C.
    Stitzinger, Ernie
    Yu, Xingjian
    [J]. JOURNAL OF ALGEBRA, 2021, 567 : 128 - 138