Finding Similar Patents Through Semantic Query Expansion

被引:7
|
作者
Sharma, Pawan [1 ]
Tripathi, Rashmi [2 ]
Tripathi, R. C. [3 ]
机构
[1] Indian Inst Informat Technol, Allahabad 211002, Uttar Pradesh, India
[2] Indian Inst Informat Technol, Allahabad 211006, Uttar Pradesh, India
[3] Indian Inst Informat Technol, Allahabad 211012, Uttar Pradesh, India
来源
ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015 | 2015年 / 54卷
关键词
Patent search; Query expansion; Retrieval; Semantic similarity; Wordnet; Wikipedia;
D O I
10.1016/j.procs.2015.06.045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Patent search is a complex task and involves a great level of expertise. Through this research we have tried to find similar patents by expanding the user query semantically. The main purpose of this research is to investigate how the patent retrieval system can be improved by using words which have same expression i.e. semantically similar. WorldNet and Wikipedia are used as an external source for expanding the query. Result shows that expanded query yields better results compared to conventional approaches of patent search. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:390 / 395
页数:6
相关论文
共 50 条
  • [31] Research on Semantic Query Expansion with Temporal Information
    Wang, Zhe
    Jiang, Shan
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING ICISCE 2015, 2015, : 437 - 441
  • [32] Semantic Query Labeling Through Synthetic Query Generation
    Bassani, Elias
    Pasi, Gabriella
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2278 - 2282
  • [33] How effective is query expansion for finding novel information?
    Zhang, M
    Lin, C
    Ma, SP
    NATURAL LANGUAGE PROCESSING - IJCNLP 2004, 2005, 3248 : 149 - 157
  • [34] Using Google Distance for Query Expansion in Expert Finding
    Yang, Kai-Hsiang
    Lin, Yu-Li
    Chuang, Chen-Tao
    2014 NINTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM), 2014, : 104 - 109
  • [35] QueryTrans: Finding Similar Queries Based on Query Trace Graph
    Li, Yanan
    Wang, Bin
    Xu, Sheng
    Li, Peng
    Li, Jintao
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 260 - 263
  • [36] Tweet Contextualization Approach Using a Semantic Query Expansion
    Dhokar, Amira
    Hlaoua, Lobna
    Ben Romdhane, Lotfi
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 387 - 396
  • [37] Integration of association rules and ontologies for semantic query expansion
    Song, Min
    Song, Il-Yeol
    Hu, Xiaohua
    Allen, Robert B.
    DATA & KNOWLEDGE ENGINEERING, 2007, 63 (01) : 63 - 75
  • [38] Image Query Expansion Using Semantic Selectional Restrictions
    El Demerdash, Osama
    Bergler, Sabine
    Kosseim, Leila
    MULTILINGUAL INFORMATION ACCESS EVALUATION II: MULTIMEDIA EXPERIMENTS, PT II, 2010, 6242 : 150 - 156
  • [39] Query Expansion Semantic Model for Web Search (MSEC)
    Nino Zambrano, Miguel Angel
    Lopez Gomez, Ivan Dario
    Adrian Andrade, Carlos
    Cobos Lozada, Carlos Alberto
    Fabregat Gesa, Ramon
    UIS INGENIERIAS, 2012, 11 (01): : 11 - 20
  • [40] Semantic Sequential Query Expansion for Biomedical Article Search
    Fang, Fan
    Zhang, Bo-Wen
    Yin, Xu-Cheng
    IEEE ACCESS, 2018, 6 : 45448 - 45457