An application of hypergeometric shift operators to the χ-spherical Fourier transform

被引:2
|
作者
Ho, Vivian M. [1 ]
Olafsson, Gestur [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Hypergeometric shift operator; hypergeometric function; symmetric space; chi-spherical Fourier transform; Paley-Wiener theorem; ROOT SYSTEMS;
D O I
10.1090/conm/650/13043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the action of hypergeometric shift operators on the Heckman-Opdam hypergeometric functions associated with the BCn type root system and some negative multiplicities. Those hypergeometric functions are connected to the chi-spherical functions on Hermitian symmetric spaces U/K where chi is a nontrivial character of K. We apply shift operators to the hypergeometric functions to move negative multiplicities to positive ones. This allows us to use many well-known results of the hypergeometric functions associated with positive multiplicities. In particular, we use this technique to achieve exponential estimates for the chi-spherical functions. The motive comes from the Paley-Wiener type theorem on line bundles over Hermitian symmetric spaces.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条