QUALITATIVE UNCERTAINTY PRINCIPLES FOR THE INVERSE OF THE HYPERGEOMETRIC FOURIER TRANSFORM

被引:0
|
作者
Mejjaoli, Hatem [1 ]
机构
[1] Taibah Univ, Dept Math, Coll Sci, POB 30002, Al Madinah Al Munawarah, Saudi Arabia
来源
KOREAN JOURNAL OF MATHEMATICS | 2015年 / 23卷 / 01期
关键词
Hypergeometric Fourier transform; Donoho-Stark's uncertainty principle; L-p Heisenberg-Pauli-Weyl uncertainty principle;
D O I
10.11568/kjm.2015.23.1.129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove an L-p version of Donoho-Stark's uncertainty principle for the inverse of the hypergeometric Fourier transform on R-d. Next, using the ultracontractive properties of the semigroups generated by the Heckman-Opdam Laplacian operator, we obtain an L-p Heisenberg-Pauli-Weyl uncertainty principle for the inverse of the hypergeometric Fourier transform on R-d.
引用
收藏
页码:129 / 151
页数:23
相关论文
共 50 条
  • [1] Qualitative uncertainty principles for the hypergeometric Fourier transform
    H. Mejjaoli
    Acta Mathematica Hungarica, 2015, 145 : 229 - 251
  • [2] Qualitative uncertainty principles for the hypergeometric Fourier transform
    Mejjaoli, H.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 229 - 251
  • [3] Hypergeometric Gabor transform and uncertainty principles
    Mejjaoli, Hatem
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [4] Uncertainty Principles for the Clifford–Fourier Transform
    Jamel El Kamel
    Rim Jday
    Advances in Applied Clifford Algebras, 2017, 27 : 2429 - 2443
  • [5] Uncertainty principles for the fractional quaternion fourier transform
    Fatima Elgadiri
    Abdellatif Akhlidj
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [6] Uncertainty principles for the fractional quaternion fourier transform
    Elgadiri, Fatima
    Akhlidj, Abdellatif
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (04)
  • [7] Sharper uncertainty principles for the windowed Fourier transform
    Liu, Ming-Sheng
    Kou, Kit Ian
    Morais, Joao
    Dang, Pei
    JOURNAL OF MODERN OPTICS, 2015, 62 (01) : 46 - 55
  • [8] Uncertainty Principles for the Clifford-Fourier Transform
    El Kamel, Jamel
    Jday, Rim
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) : 2429 - 2443
  • [9] QUALITATIVE UNCERTAINTY PRINCIPLES FOR THE GENERALIZED HARTLEY TRANSFORM
    Mejjaoli, Hatem
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 57 - 89
  • [10] QUALITATIVE AND QUANTITATIVE UNCERTAINTY PRINCIPLES FOR THE GENERALIZED FOURIER TRANSFORM ASSOCIATED WITH THE RIEMANN-LIOUVILLE OPERATOR
    Mejjaoli, Hatem
    Othmani, Youssef
    MATEMATICHE, 2016, 71 (02): : 173 - 195