Uncertainty principles for the fractional quaternion fourier transform

被引:2
|
作者
Elgadiri, Fatima [1 ]
Akhlidj, Abdellatif [1 ]
机构
[1] Univ Hassan 2, Fac Sci Ain Chock, Dept Math, Casablanca 20100, Morocco
关键词
Fractional quaternion fourier transform; Hardy's theorem; Miyachi's theorem; Local uncertainty principles; THEOREM;
D O I
10.1007/s11868-023-00549-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fractional Quaternion Fourier transform (FrQFT) is a generalization of the usual Quaternion Fourier Transform F-Q. The aim of this paper is to prove some qualitative and quantitative uncertainty principles for FrQFT. The first result consists the Hardy's and an L-p - L-q-version of Miyachi's theorems for the FrQFT, which estimates the decay of two fractional quaternion Fourier transforms F-i,j(alpha)[f] and F-i,j(gamma)[f] with gamma(k)-alpha(k) not equal n pi, for all n is an element of Z with k = 1, 2. The second result consists an extension of Faris' local uncertainty principle for the FrQFT. From our results we deduce the usual uncertainty principles for the FrQFT which states these theorems between a function f and its Fractional Quaternion Fourier Transform F-i,j(gamma)[f].
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Uncertainty principles for the fractional quaternion fourier transform
    Fatima Elgadiri
    Abdellatif Akhlidj
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [2] UNCERTAINTY PRINCIPLES ASSOCIATED WITH THE SHORT TIME QUATERNION COUPLED FRACTIONAL FOURIER TRANSFORM
    Gupta, Bivek
    Verma, Amit K.
    Agarwal, Ravi P.
    MATEMATICKI VESNIK, 2024, 76 (1-2): : 84 - 104
  • [3] Tighter Uncertainty Principles Based on Quaternion Fourier Transform
    Yang, Yan
    Dang, Pei
    Qian, Tao
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 479 - 497
  • [4] Tighter Uncertainty Principles Based on Quaternion Fourier Transform
    Yan Yang
    Pei Dang
    Tao Qian
    Advances in Applied Clifford Algebras, 2016, 26 : 479 - 497
  • [5] Uncertainty principles of the fractional Clifford-Fourier transform
    Shi, Haipan
    Gao, Long
    Xie, Yonghong
    Qiao, Yuying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (15) : 16105 - 16125
  • [6] Uncertainty principles of hypercomplex functions for fractional Fourier transform
    Gao, Wen-Biao
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) : 2298 - 2317
  • [7] Fractional Fourier Transform, Signal Processing and Uncertainty Principles
    Aloui, Zaineb
    Brahim, Kamel
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (02) : 892 - 912
  • [8] Uncertainty principles of hypercomplex functions for fractional Fourier transform
    Wen-Biao Gao
    Fractional Calculus and Applied Analysis, 2023, 26 : 2298 - 2317
  • [9] Uncertainty principles for windowed coupled fractional Fourier transform
    Bahri, Mawardi
    Syamsuddin, Fitriyani
    Bachtiar, Nasrullah
    Amir, Amir Kamal
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (09) : 7418 - 7437
  • [10] Fractional Fourier Transform, Signal Processing and Uncertainty Principles
    Zaineb Aloui
    Kamel Brahim
    Circuits, Systems, and Signal Processing, 2023, 42 : 892 - 912