UNCERTAINTY PRINCIPLES ASSOCIATED WITH THE SHORT TIME QUATERNION COUPLED FRACTIONAL FOURIER TRANSFORM

被引:0
|
作者
Gupta, Bivek [1 ]
Verma, Amit K. [1 ]
Agarwal, Ravi P. [2 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Bihta 801103, India
[2] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX USA
来源
MATEMATICKI VESNIK | 2024年 / 76卷 / 1-2期
关键词
Quaternion coupled fractional Fourier transform; short time quater- nion coupled fractional Fourier transform; Lieb's uncertainty principle; PLANCHEREL THEOREM;
D O I
10.57016/MV-XtlG4184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the coupled fractional Fourier transform of complex valued functions to that of the quaternion valued functions on R4 and call it the quaternion coupled fractional Fourier transform (QCFrFT). We obtain the sharp Hausdorff-Young inequality for QCFrFT and obtain the associated Re`nyi uncertainty principle. We also define the short time quaternion coupled fractional Fourier transform (STQCFrFT) and explore its important properties followed by the Lieb's and entropy uncertainty principles.
引用
收藏
页码:84 / 104
页数:21
相关论文
共 50 条
  • [1] Uncertainty principles for the fractional quaternion fourier transform
    Fatima Elgadiri
    Abdellatif Akhlidj
    [J]. Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [2] Uncertainty principles for the fractional quaternion fourier transform
    Elgadiri, Fatima
    Akhlidj, Abdellatif
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (04)
  • [3] Short time coupled fractional fourier transform and the uncertainty principle
    Ramanathan Kamalakkannan
    Rajakumar Roopkumar
    Ahmed Zayed
    [J]. Fractional Calculus and Applied Analysis, 2021, 24 : 667 - 688
  • [4] SHORT TIME COUPLED FRACTIONAL FOURIER TRANSFORM AND THE UNCERTAINTY PRINCIPLE
    Kamalakkannan, Ramanathan
    Roopkumar, Rajakumar
    Zayed, Ahmed
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (03) : 667 - 688
  • [5] Short Time Quaternion Quadratic Phase Fourier Transform and Its Uncertainty Principles
    Gupta, Bivek
    Verma, Amit K.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (03)
  • [6] Uncertainty principles for windowed coupled fractional Fourier transform
    Bahri, Mawardi
    Syamsuddin, Fitriyani
    Bachtiar, Nasrullah
    Amir, Amir Kamal
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (09) : 7418 - 7437
  • [7] The logarithmic, Heisenberg's and short-time uncertainty principles associated with fractional Fourier transform
    Xu Guanlei
    Wang Xiaotong
    Xu Xiaogang
    [J]. SIGNAL PROCESSING, 2009, 89 (03) : 339 - 343
  • [8] Uncertainty principles associated with the directional short-time Fourier transform
    Mejjaoli, Hatem
    Shah, Firdous A.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (06)
  • [9] Quantitative uncertainty principles associated with the directional short-time Fourier transform
    Mejjaoli, Hatem
    Omri, Slim
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (10) : 753 - 779
  • [10] Tighter Uncertainty Principles Based on Quaternion Fourier Transform
    Yang, Yan
    Dang, Pei
    Qian, Tao
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 479 - 497