Construction of (nearly) orthogonal sliced Latin hypercube designs

被引:8
|
作者
Wang, Xiao-Lei
Zhao, Yu-Na
Yang, Jian-Feng [1 ]
Liu, Min-Qian
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiments; Near orthogonality; Second-order orthogonality; Sliced Latin hypercube designs; COMPUTER EXPERIMENTS; QUANTITATIVE FACTORS; MODELS; VARIABLES;
D O I
10.1016/j.spl.2017.02.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced Latin hypercube designs have found a wide range of applications. Such a design is a special Latin hypercube design that can be partitioned into slices which are still LHDs when the levels of each slices are collapsed properly. In this paper we propose a method for constructing sliced Latin hypercube designs with second-order orthogonality. The resulting designs are further augmented to be nearly orthogonal sliced Latin hypercube designs which have much more columns. Also, two methods of generating nearly orthogonal sliced Latin hypercube designs are proposed. The methods are convenient, efficient and capable of accommodating any number of slices. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:174 / 180
页数:7
相关论文
共 50 条
  • [41] BI-DIRECTIONAL SLICED LATIN HYPERCUBE DESIGNS
    Zhou, Qiang
    Jin, Tian
    Qian, Peter Z. G.
    Zhou, Shiyu
    STATISTICA SINICA, 2016, 26 (02) : 653 - 674
  • [42] ORTHOGONAL LATIN HYPERCUBE DESIGNS FOR EIGHT FACTORS
    Singh, Poonam
    Kumar, Nilesh
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2023, 19 (01): : 427 - 434
  • [43] On second order orthogonal Latin hypercube designs
    Evangelaras, Haralambos
    Koutras, Markos V.
    JOURNAL OF COMPLEXITY, 2017, 39 : 111 - 121
  • [44] Orthogonal-maximin Latin hypercube designs
    Joseph, V. Roshan
    Hung, Ying
    STATISTICA SINICA, 2008, 18 (01) : 171 - 186
  • [45] SOME CLASSES OF ORTHOGONAL LATIN HYPERCUBE DESIGNS
    Georgiou, Stelios D.
    Efthimiou, Ifigenia
    STATISTICA SINICA, 2014, 24 (01) : 101 - 120
  • [46] Orthogonal Latin Hypercube Designs for Three Columns
    Parui, Shyamsundar
    Mandal, B. N.
    Parsad, Rajender
    Dash, Sukanta
    UTILITAS MATHEMATICA, 2018, 108 : 149 - 158
  • [47] A CENTRAL LIMIT THEOREM FOR NESTED OR SLICED LATIN HYPERCUBE DESIGNS
    He, Xu
    Qian, Peter Z. G.
    STATISTICA SINICA, 2016, 26 (03) : 1117 - 1128
  • [48] Sliced Latin hypercube designs with both branching and nested factors
    Chen, Hao
    Yang, Jinyu
    Lin, Dennis K. J.
    Liu, Min-Qian
    STATISTICS & PROBABILITY LETTERS, 2019, 146 : 124 - 131
  • [49] Flexible sliced Latin hypercube designs with slices of different sizes
    Ru Yuan
    Bing Guo
    Min-Qian Liu
    Statistical Papers, 2021, 62 : 1117 - 1134
  • [50] Flexible sliced Latin hypercube designs with slices of different sizes
    Yuan, Ru
    Guo, Bing
    Liu, Min-Qian
    STATISTICAL PAPERS, 2021, 62 (03) : 1117 - 1134