Quantitative Comparison of Two Particle Tracking Methods in Fluorescence Microscopy Images

被引:0
|
作者
Mabaso, Matsilele [1 ]
Twala, Bhekisipho [2 ]
Withey, Daniel [1 ]
机构
[1] CSIR, MDS MIAS, ZA-0001 Pretoria, South Africa
[2] Univ Johannesburg, Dept Elect Engn, Johannesburg, South Africa
关键词
D O I
10.1109/BRICS-CCI-CBIC.2013.106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tracking of multiple bright particles (spots) in fluorescence microscopy image sequences is seen as a crucial step in understanding complex information in the cell. However, fluorescence microscopy generates high a volume of noisy image data that cannot be analysed efficiently by means of manual analysis. In this study we compare the performance of two computer-based tracking methods for tracking of bright particles in fluorescence microscopy image sequences. The methods under comparison are, Interacting Multiple Model filter and Feature Point Tracking. The performance of the methods is validated using synthetic but realistic image sequences and real images. The results from experiments show that the Interacting Multiple Model filter performed best, under the test conditions.
引用
收藏
页码:604 / 608
页数:5
相关论文
共 50 条
  • [11] TRACKING VIRUS PARTICLES IN FLUORESCENCE MICROSCOPY IMAGES VIA A PARTICLE KALMAN FILTER
    Godinez, W. J.
    Rohr, K.
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 532 - 535
  • [12] Object Tracking With Particle Filtering in Fluorescence Microscopy Images: Application to the Motion of Neurofilaments in Axons
    Yuan, Liang
    Zheng, Yuan F.
    Zhu, Junda
    Wang, Lina
    Brown, A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (01) : 117 - 130
  • [13] Statistical analysis methods for the quantitative detection of single molecules in fluorescence microscopy images
    Peterson, Eric M.
    Wayment, Joshua R.
    Harris, Joel M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237 : 324 - 324
  • [14] NEUROFILAMENT TRACKING BY DETECTION IN FLUORESCENCE MICROSCOPY IMAGES
    Zhu, Junda
    Yuan, Liang
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3123 - 3127
  • [15] Adaptive particle representation of fluorescence microscopy images
    Cheeseman, Bevan L.
    Guenther, Ulrik
    Gonciarz, Krzysztof
    Susik, Mateusz
    Sbalzarini, Ivo F.
    NATURE COMMUNICATIONS, 2018, 9
  • [16] Adaptive particle representation of fluorescence microscopy images
    Bevan L. Cheeseman
    Ulrik Günther
    Krzysztof Gonciarz
    Mateusz Susik
    Ivo F. Sbalzarini
    Nature Communications, 9
  • [17] Deep Particle Tracker: Automatic Tracking of Particles in Fluorescence Microscopy Images Using Deep Learning
    Spilger, Roman
    Wollmann, Thomas
    Qiang, Yu
    Imle, Andrea
    Lee, Ji Young
    Mueller, Barbara
    Fackler, Oliver T.
    Bartenschlager, Ralf
    Rohr, Karl
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 : 128 - 136
  • [18] Deep probabilistic tracking of particles in fluorescence microscopy images
    Spilger, Roman
    Lee, Ji-Young
    Chagin, Vadim O.
    Schermelleh, Lothar
    Cardoso, M. Cristina
    Bartenschlager, Ralf
    Rohr, Karl
    Medical Image Analysis, 2021, 72
  • [19] Probabilistic tracking of virus particles in fluorescence microscopy images
    Godinez, W. J.
    Lampe, M.
    Woerz, S.
    Mueller, B.
    Eils, R.
    Rohr, K.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 272 - +
  • [20] Deep probabilistic tracking of particles in fluorescence microscopy images
    Spilger, Roman
    Lee, Ji-Young
    Chagin, Vadim O.
    Schermelleh, Lothar
    Cardoso, M. Cristina
    Bartenschlager, Ralf
    Rohr, Karl
    MEDICAL IMAGE ANALYSIS, 2021, 72