Maximal non-prime ideally equal subrings of a commutative ring

被引:1
|
作者
Al-Kuleab, Naseam [1 ]
Jarboui, Noomen [1 ]
Omar, Almallah [2 ]
机构
[1] King Faisal Univ, Fac Sci, Dept Math, POB 380, Al Hasa 31982, Saudi Arabia
[2] Al Balqa Univ, Amman, Jordan
关键词
Integral domain; Prime ideal; Algebraic extension; Residually algebraic pair; Prufer domain; Valuation domain; Pullback; DOMAIN; PAIRS;
D O I
10.1007/s11587-018-0388-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A commutative ring R is said to be maximal non-prime ideally equal subring of S, if Spec(R) not equal Spec(S), whereas Spec(T) = Spec(S) for any subring T of S properly containing R. The aim of this paper is to give a complete characterization of this class of rings.
引用
下载
收藏
页码:951 / 962
页数:12
相关论文
共 50 条
  • [41] New linear codes over non-prime fields
    Aydin, Nuh
    Bakbouk, Ghada
    Lambrinos, Jonathan G. G.
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05): : 891 - 902
  • [42] Galois towers over non-prime finite fields
    Bassa, Alp
    Beelen, Peter
    Garcia, Arnaldo
    Stichtenoth, Henning
    ACTA ARITHMETICA, 2014, 164 (02) : 163 - 179
  • [43] A visit to maximal non-ACCP subrings
    Jarboui, Nooemen
    Toumi, Manar El Islam
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (01)
  • [44] Commutative subrings of certain non-associative rings
    Benedict H. Gross
    Wee Teck Gan
    Mathematische Annalen, 1999, 314 : 265 - 283
  • [45] ON MAXIMAL NON-UNIVERSALLY CATENARIAN SUBRINGS
    Ben Nasr, Mabrouk
    Jarboui, Noomen
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (05) : 553 - 556
  • [46] On inequivalent representations of matroids over non-prime fields
    Geelen, Jim
    Gerards, Bert
    Whittle, Geoff
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (06) : 740 - 743
  • [47] New linear codes over non-prime fields
    Nuh Aydin
    Ghada Bakbouk
    Jonathan G. G. Lambrinos
    Cryptography and Communications, 2019, 11 : 891 - 902
  • [48] The Rough Intuitionistic Fuzzy Ideals of Intuitionistic Fuzzy Subrings in a Commutative Ring
    Mandal, Prasenjit
    Ranadive, A. S.
    FUZZY INFORMATION AND ENGINEERING, 2014, 6 (03) : 279 - 297
  • [49] A QUESTION ABOUT MAXIMAL NON φ-CHAINED SUBRINGS
    Gaur, Atul
    Kumar, Rahul
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (01): : 11 - 19
  • [50] Maximal non-Jaffard subrings of a field
    Ben Nasr, M
    Jarboui, N
    PUBLICACIONS MATEMATIQUES, 2000, 44 (01) : 157 - 175