NTS: An R Package for Nonlinear Time Series Analysis

被引:0
|
作者
Liu, Xialu [1 ]
Chen, Rong [2 ]
Tsay, Ruey [3 ]
机构
[1] San Diego State Univ, Dept Management Informat Syst, 5500 Campanile Dr, San Diego, CA 92182 USA
[2] Rutgers State Univ, Dept Stat, 57 US Highway 1, New Brunswick, NJ 08901 USA
[3] Univ Chicago, Booth Sch Business, 5807 S Woodlawn Ave, Chicago, IL 60637 USA
来源
R JOURNAL | 2020年 / 12卷 / 02期
关键词
BEARINGS-ONLY TRACKING;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Linear time series models are commonly used in analyzing dependent data and in forecasting. On the other hand, real phenomena often exhibit nonlinear behavior and the observed data show nonlinear dynamics. This paper introduces the R package NTS that offers various computational tools and nonlinear models for analyzing nonlinear dependent data. The package fills the gaps of several outstanding R packages for nonlinear time series analysis. Specifically, the NTS package covers the implementation of threshold autoregressive (TAR) models, autoregressive conditional mean models with exogenous variables (ACMx), functional autoregressive models, and state-space models. Users can also evaluate and compare the performance of different models and select the best one for prediction. Furthermore, the package implements flexible and comprehensive sequential Monte Carlo methods (also known as particle filters) for modeling non-Gaussian or nonlinear processes. Several examples are used to demonstrate the capabilities of the NTS package.
引用
收藏
页码:293 / 310
页数:18
相关论文
共 50 条
  • [21] TimiRGeN: R/Bioconductor package for time series microRNA-mRNA integration and analysis
    Patel, K.
    Chandrasegaran, S.
    Clark, I. M.
    Proctor, C. J.
    Young, D. A.
    Shanley, D. P.
    BIOINFORMATICS, 2021, 37 (20) : 3604 - 3609
  • [22] Practical implementation of nonlinear time series methods: The TISEAN package
    Hegger, R
    Kantz, H
    Schreiber, T
    CHAOS, 1999, 9 (02) : 413 - 435
  • [23] TSAN - A PACKAGE FOR TIME-SERIES ANALYSIS
    WANG, DCC
    VAGNUCCI, AH
    COMPUTER PROGRAMS IN BIOMEDICINE, 1980, 11 (02): : 132 - 144
  • [24] Maximum Entropy Bootstrap for Time Series: The meboot R Package
    Vinod, Hrishikesh D.
    Lopez-de-Lacalle, Javier
    JOURNAL OF STATISTICAL SOFTWARE, 2009, 29 (05): : 1 - 19
  • [25] The smoots Package in R for Semiparametric Modeling of Trend Time Series
    Feng, Yuanhua
    Gries, Thomas
    Letmathe, Sebastian
    Schulz, Dominik
    R JOURNAL, 2022, 14 (01): : 182 - 195
  • [26] starvars: An R Package for Analysing Nonlinearities in Multivariate Time Series
    Bucci, Andrea
    Palomba, Giulio
    Rossi, Eduardo
    R JOURNAL, 2022, 14 (01): : 208 - 226
  • [27] Time-Series Clustering in R Using the dtwclust Package
    Sarda-Espinosa, Alexis
    R JOURNAL, 2019, 11 (01): : 22 - 43
  • [28] tsrobprep - an R package for robust preprocessing of time series data
    Narajewski, Michal
    Kley-Holsteg, Jens
    Ziel, Florian
    SOFTWAREX, 2021, 16
  • [29] Inference for Network Count Time Series with the R Package PNAR
    Armillotta, Mirko
    Tsagris, Michail
    Fokianos, Konstantinos
    R JOURNAL, 2023, 15 (04): : 255 - 269
  • [30] An R package for identification of outliers in environmental time series data
    Campulova, Martina
    Campula, Roman
    Holesovsky, Jan
    ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 155