NTS: An R Package for Nonlinear Time Series Analysis

被引:0
|
作者
Liu, Xialu [1 ]
Chen, Rong [2 ]
Tsay, Ruey [3 ]
机构
[1] San Diego State Univ, Dept Management Informat Syst, 5500 Campanile Dr, San Diego, CA 92182 USA
[2] Rutgers State Univ, Dept Stat, 57 US Highway 1, New Brunswick, NJ 08901 USA
[3] Univ Chicago, Booth Sch Business, 5807 S Woodlawn Ave, Chicago, IL 60637 USA
来源
R JOURNAL | 2020年 / 12卷 / 02期
关键词
BEARINGS-ONLY TRACKING;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Linear time series models are commonly used in analyzing dependent data and in forecasting. On the other hand, real phenomena often exhibit nonlinear behavior and the observed data show nonlinear dynamics. This paper introduces the R package NTS that offers various computational tools and nonlinear models for analyzing nonlinear dependent data. The package fills the gaps of several outstanding R packages for nonlinear time series analysis. Specifically, the NTS package covers the implementation of threshold autoregressive (TAR) models, autoregressive conditional mean models with exogenous variables (ACMx), functional autoregressive models, and state-space models. Users can also evaluate and compare the performance of different models and select the best one for prediction. Furthermore, the package implements flexible and comprehensive sequential Monte Carlo methods (also known as particle filters) for modeling non-Gaussian or nonlinear processes. Several examples are used to demonstrate the capabilities of the NTS package.
引用
收藏
页码:293 / 310
页数:18
相关论文
共 50 条
  • [1] Ordinal Time Series Analysis with the R Package otsfeatures
    Lopez-Oriona, Angel
    Vilar, Jose A.
    MATHEMATICS, 2023, 11 (11)
  • [2] KarsTS: an R package for microclimate time series analysis
    M. Sáez
    C. Pla
    S. Cuezva
    D. Benavente
    Earth Science Informatics, 2019, 12 : 685 - 697
  • [3] Algorithms for linear time series analysis: With R package
    McLeod, A. Ian
    Yu, Hao
    Krougly, Zinovi L.
    JOURNAL OF STATISTICAL SOFTWARE, 2007, 23 (05):
  • [4] DChaos: An R Package for Chaotic Time Series Analysis
    Sandubete, Julio E.
    Escot, Lorenzo
    R JOURNAL, 2021, 13 (01): : 232 - 252
  • [5] KarsTS: an R package for microclimate time series analysis
    Saez, M.
    Pla, C.
    Cuezva, S.
    Benavente, D.
    EARTH SCIENCE INFORMATICS, 2019, 12 (04) : 685 - 697
  • [6] wavScalogram: An R Package with Wavelet Scalogram Tools for Time Series Analysis
    Bolos, Vicente J.
    Benitez, Rafael
    R JOURNAL, 2022, 14 (02): : 164 - 185
  • [7] TSclust: An R Package for Time series clustering
    Montero, Pablo
    Vilar, Jose A.
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 62 (01): : 1 - 43
  • [8] rainbow: An R Package for Visualizing Functional Time Series
    Shang, Han Lin
    R JOURNAL, 2011, 3 (02): : 54 - 59
  • [9] Time Series Forecasting with KNN in R: the tsfknn Package
    Martinez, Francisco
    Frias, Maria P.
    Charte, Francisco
    Rivera, Antonio J.
    R JOURNAL, 2019, 11 (02): : 229 - 242
  • [10] predtoolsTS: R package for streamlining time series forecasting
    Francisco Charte
    Alberto Vico
    María D. Pérez-Godoy
    Antonio J. Rivera
    Progress in Artificial Intelligence, 2019, 8 : 505 - 510