Submodular Hypergraphs: p-Laplacians, Cheeger Inequalities and Spectral Clustering

被引:0
|
作者
Li, Pan [1 ]
Milenkovic, Olgica [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
1-LAPLACIAN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce submodular hypergraphs, a family of hypergraphs that have different submodular weights associated with different cuts of hyper-edges. Submodular hypergraphs arise in clustering applications in which higher-order structures carry relevant information. For such hypergraphs, we define the notion of p-Laplacians and derive corresponding nodal domain theorems and k-way Cheeger inequalities. We conclude with the description of algorithms for computing the spectra of 1- and 2-Laplacians that constitute the basis of new spectral hypergraph clustering methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] General Cheeger inequalities for p-Laplacians on graphs
    Keller, Matthias
    Mugnolo, Delio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 80 - 95
  • [2] Hypergraphs with edge-dependent vertex weights: p-Laplacians and spectral clustering
    Zhu, Yu
    Segarra, Santiago
    FRONTIERS IN BIG DATA, 2023, 6
  • [3] Hardy inequalities for magnetic p-Laplacians
    Cazacu, Cristian
    Krejcirik, David
    Lam, Nguyen
    Laptev, Ari
    NONLINEARITY, 2024, 37 (03)
  • [4] Hardy inequalities for p-Laplacians with Robin boundary conditions
    Ekholm, Tomas
    Kovarik, Hynek
    Laptev, Ari
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 365 - 379
  • [5] Laplacians of graphs and Cheeger's inequalities
    Chung, FRK
    COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 157 - 172
  • [6] Cheeger inequalities for unbounded graph Laplacians
    Bauer, Frank
    Keller, Matthias
    Wojciechowski, Radoslaw K.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (02) : 259 - 271
  • [7] Homological eigenvalues of graph p-Laplacians
    Zhang, Dong
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023,
  • [8] Eigenvalue problems for perturbed p-Laplacians
    Hasanov, M.
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 400 - 410
  • [9] EIGENVALUES FOR SYSTEMS OF FRACTIONAL p-LAPLACIANS
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (04) : 1077 - 1104
  • [10] Hypergraph p-Laplacians and Scale Spaces
    Fazeny, Ariane
    Tenbrinck, Daniel
    Lukin, Kseniia
    Burger, Martin
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2024, 66 (04) : 529 - 549