Sex alters molecular evolution in diploid experimental populations of S. cerevisiae

被引:17
|
作者
Leu, Jun-Yi [1 ]
Chang, Shang-Lin [1 ,2 ]
Chao, Jung-Chi [1 ]
Woods, Laura C. [3 ]
McDonald, Michael J. [3 ]
机构
[1] Acad Sinica, Inst Mol Biol, Nangang, Taiwan
[2] Acad Sinica, Genom Res Ctr, Nangang, Taiwan
[3] Monash Univ, Sch Biol Sci, Monash, Vic, Australia
基金
澳大利亚研究理事会;
关键词
PARALLEL EVOLUTION; HETEROZYGOTE ADVANTAGE; MITOTIC RECOMBINATION; DIMINISHING RETURNS; COURT JESTER; RED QUEEN; ADAPTATION; MUTATIONS; DIVERSITY; EPISTASIS;
D O I
10.1038/s41559-020-1101-1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Sex is common among eukaryotes, but entails considerable costs. The selective conditions that drive the evolutionary maintenance of sexual reproduction remain an open question. One long-standing explanation is that sex and recombination facilitate adaptation to fluctuating environmental conditions, although the genetic mechanisms that underlie such a benefit have not been empirically observed. In this study, we compare the dynamics and fitness effects of mutations in sexual and asexual diploid populations of the yeast Saccharomyces cerevisiae during adaptation to a fluctuating environment. While we find no detectable difference in the rate of adaptation between sexual and asexual populations, only the former evolve high fitness mutations in parallel, a genetic signature of adaptation. Using genetic reconstructions and fitness assays, we demonstrate that evolved, overdominant mutations can be beneficial in asexual populations, but maintained at lower frequencies in sexual populations due to segregation load. Overall these data show that sex alters the molecular basis of adaptation in diploids, and confers both costs and benefits. The genetic mechanisms underlying the benefits of sex are unclear. Experimental evolution in sexual and asexual diploid populations of Saccharomyces cerevisiae shows that overdominant mutations are beneficial in asexual populations but stay at lower frequencies in sexual populations due to segregation load.
引用
收藏
页码:453 / +
页数:11
相关论文
共 50 条
  • [31] Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
    Ottilie, Sabine
    Luth, Madeline R.
    Hellemann, Erich
    Goldgof, Gregory M.
    Vigil, Eddy
    Kumar, Prianka
    Cheung, Andrea L.
    Song, Miranda
    Godinez-Macias, Karla P.
    Carolino, Krypton
    Yang, Jennifer
    Lopez, Gisel
    Abraham, Matthew
    Tarsio, Maureen
    LeBlanc, Emmanuelle
    Whitesell, Luke
    Schenken, Jake
    Gunawan, Felicia
    Patel, Reysha
    Smith, Joshua
    Love, Melissa S.
    Williams, Roy M.
    McNamara, Case W.
    Gerwick, William H.
    Ideker, Trey
    Suzuki, Yo
    Wirth, Dyann F.
    Lukens, Amanda K.
    Kane, Patricia M.
    Cowen, Leah E.
    Durrant, Jacob D.
    Winzeler, Elizabeth A.
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [32] Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
    Sabine Ottilie
    Madeline R. Luth
    Erich Hellemann
    Gregory M. Goldgof
    Eddy Vigil
    Prianka Kumar
    Andrea L. Cheung
    Miranda Song
    Karla P. Godinez-Macias
    Krypton Carolino
    Jennifer Yang
    Gisel Lopez
    Matthew Abraham
    Maureen Tarsio
    Emmanuelle LeBlanc
    Luke Whitesell
    Jake Schenken
    Felicia Gunawan
    Reysha Patel
    Joshua Smith
    Melissa S. Love
    Roy M. Williams
    Case W. McNamara
    William H. Gerwick
    Trey Ideker
    Yo Suzuki
    Dyann F. Wirth
    Amanda K. Lukens
    Patricia M. Kane
    Leah E. Cowen
    Jacob D. Durrant
    Elizabeth A. Winzeler
    Communications Biology, 5
  • [33] WRIGHT THEORY OF EVOLUTION - A CITATION CLASSIC COMMENTARY ON THE GENERAL STRUCTURE OF POPULATIONS BY WRIGHT,S.
    CROW, JF
    CURRENT CONTENTS/AGRICULTURE BIOLOGY & ENVIRONMENTAL SCIENCES, 1989, (37): : 16 - 16
  • [34] WRIGHT THEORY OF EVOLUTION - A CITATION CLASSIC COMMENTARY ON THE GENERAL STRUCTURE OF POPULATIONS BY WRIGHT,S.
    CROW, JF
    CURRENT CONTENTS/ARTS & HUMANITIES, 1989, (19): : 16 - 16
  • [35] Clustering of Saccharomyces boulardii strains within the species S. cerevisiae using molecular typing techniques
    Mitterdorfer, G.
    Mayer, H.K.
    Kneifel, W.
    Viernstein, H.
    Journal of Applied Microbiology, 2002, 93 (04): : 521 - 530
  • [36] In vivo inhibition of S. cerevisiae α-glucosidase validates molecular modeling and in silico inhibitor docking studies
    Turner, Joshua
    Kennedy, Sarah
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [37] Incidence and Formation of Petite Mutants in Lager Brewing Yeast Saccharomyces cerevisiae (syn. S. pastorianus) Populations
    Jenkins, Cheryl L.
    Lawrence, Stephen J.
    Kennedy, Alan I.
    Thurston, Pat
    Hodgson, Jeff A.
    Smart, Katherine A.
    JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS, 2009, 67 (02) : 72 - 80
  • [38] Non-random clustering of stress-related genes during evolution of the S. cerevisiae genome
    Debra T Burhans
    Lakshmi Ramachandran
    Jianxin Wang
    Ping Liang
    Hugh G Patterton
    Michael Breitenbach
    William C Burhans
    BMC Evolutionary Biology, 6
  • [39] Non-random clustering of stress-related genes during evolution of the S. cerevisiae genome
    T Burhans, Debra
    Ramachandran, Lakshmi
    Wang, Jianxin
    Liang, Ping
    Patterton, Hugh G.
    Breitenbach, Michael
    Burhans, William C.
    BMC EVOLUTIONARY BIOLOGY, 2006, 6 (1)
  • [40] Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation
    Voordeckers, Karin
    Verstrepen, Kevin J.
    CURRENT OPINION IN MICROBIOLOGY, 2015, 28 : 1 - 9