Torus quotients of Richardson varieties in the Grassmannian

被引:5
|
作者
Bakshi, Sarjick [1 ]
Kannan, S. Senthamarai [1 ]
Venkata, Subrahmanyam K. [1 ]
机构
[1] Chennai Math Inst, Plot H1,SIPCOT IT Pk, Chennai 603103, Tamil Nadu, India
关键词
GIT; projective normality; Richardson varieties; semistable points; HOMOGENEOUS SPACES; DECOMPOSITION;
D O I
10.1080/00927872.2019.1668005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the GIT quotient of the minimal Schubert variety in the Grassmannian admitting semistable points for the action of maximal torus T, with respect to the T-linearized line bundle and show that this is smooth when When n = 7 and r = 3 we study the GIT quotients of all Richardson varieties in the minimal Schubert variety. This builds on work by Kumar [21], Kannan and Sardar [18], Kannan and Pattanayak [17], and Kannan et al. [16]. It is known that the GIT quotient of is projectively normal. We give a different combinatorial proof.
引用
收藏
页码:891 / 914
页数:24
相关论文
共 50 条
  • [31] Quotients on the Sato Grassmannian and the moduli of vector bundles
    Casimiro, A. C.
    Porras, J. M. Munoz
    Martin, F. J. Plaza
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (19)
  • [32] PONTRYAGIN RING OF TORUS QUOTIENTS
    BAUES, HJ
    MATHEMATISCHE ZEITSCHRIFT, 1973, 134 (03) : 221 - 228
  • [33] Orbifold cohomology of torus quotients
    Goldin, Rebecca
    Holm, Tara S.
    Knutson, Allen
    DUKE MATHEMATICAL JOURNAL, 2007, 139 (01) : 89 - 139
  • [34] Prym varieties and the infinite Grassmannian
    Martin, FJP
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (01) : 75 - 93
  • [35] Free subgroups with torsion quotients and profinite subgroups with torus quotients
    Lewis, Wayne
    Loth, Peter
    Mader, Adolf
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2020, 144 : 177 - 195
  • [36] QUOTIENTS OF TORIC VARIETIES
    KAPRANOV, MM
    STURMFELS, B
    ZELEVINSKY, AV
    MATHEMATISCHE ANNALEN, 1991, 290 (04) : 643 - 655
  • [37] A LITTLEWOOD-RICHARDSON RULE FOR GRASSMANNIAN PERMUTATIONS
    Purbhoo, Kevin
    Sottile, Frank
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 1875 - 1882
  • [38] Torus quotients of homogeneous spaces - minimal dimensional Schubert varieties admitting semi-stable points
    Kannan, S. S.
    Pattanayak, S. K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (04): : 469 - 485
  • [39] Torus quotients of homogeneous spaces — minimal dimensional Schubert varieties admitting semi-stable points
    S. S. Kannan
    S. K. Pattanayak
    Proceedings - Mathematical Sciences, 2009, 119 : 469 - 485
  • [40] ARITHMETIC OF DOUBLE TORUS QUOTIENTS AND THE DISTRIBUTION OF PERIODIC TORUS ORBITS
    Khayutin, Ilya
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (12) : 2365 - 2432