Nowcasting: An R Package for Predicting Economic Variables Using Dynamic Factor Models

被引:0
|
作者
de Valk, Serge [1 ]
de Mattos, Daiane [2 ]
Ferreira, Pedro [2 ]
机构
[1] EPGE Brazilian Sch Econ & Finance FGV EPGE, 60 Barao de Itambi, Rio De Janeiro, RJ, Brazil
[2] FGV IBRE, 60 Barao de Itambi, Rio De Janeiro, RJ, Brazil
来源
R JOURNAL | 2019年 / 11卷 / 01期
关键词
NUMBER;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The nowcasting package provides the tools to make forecasts of monthly or quarterly economic variables using dynamic factor models. The objective is to help the user at each step of the forecasting process, starting with the construction of a database, all the way to the interpretation of the forecasts. The dynamic factor model adopted in this package is based on the articles from Giannone et al. (2008) and Banbura. et al. (2011). Although there exist several other dynamic factor model packages available for R, ours provides an environment to easily forecast economic variables and interpret results.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 50 条
  • [21] motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites
    Coetzee, Simon G.
    Coetzee, Gerhard A.
    Hazelett, Dennis J.
    BIOINFORMATICS, 2015, 31 (23) : 3847 - 3849
  • [22] Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors
    Soybilgen, Baris
    Yazgan, Ege
    COMPUTATIONAL ECONOMICS, 2021, 57 (01) : 387 - 417
  • [23] Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors
    Barış Soybilgen
    Ege Yazgan
    Computational Economics, 2021, 57 : 387 - 417
  • [24] NicheMapR - an R package for biophysical modelling: the ectotherm and Dynamic Energy Budget models
    Kearney, Michael R.
    Porter, Warren P.
    ECOGRAPHY, 2020, 43 (01) : 85 - 96
  • [25] EviewsR: An R Package for Dynamic and Reproducible Research Using EViews, R, R Markdown and Quarto
    Mati, Sagiru
    Civcir, Irfan
    Abba, S. I.
    R JOURNAL, 2023, 15 (02): : 169 - 205
  • [26] Predicting contractor failure using stochastic dynamics of economic and financial variables
    Russell, JS
    Zhai, HM
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT-ASCE, 1996, 122 (02): : 183 - 191
  • [27] Can we use seasonally adjusted variables in dynamic factor models?
    Camacho, Maximo
    Lovcha, Yuliya
    Quiros, Gabriel Perez
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2015, 19 (03): : 377 - 391
  • [28] Estimating Complex Measurement and Growth Models Using the R Package PLmixed
    Rockwood, Nicholas J.
    Jeon, Minjeong
    MULTIVARIATE BEHAVIORAL RESEARCH, 2019, 54 (02) : 288 - 306
  • [29] A comparison of dynamic hazard models and static models for predicting the special treatment of stocks in China with comprehensive variables
    Zhou, Ligang
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (07) : 1077 - 1090
  • [30] Predicting Comorbidities using Resampling and Dynamic Bayesian Networks with Latent Variables
    Yousefi, Leila
    Saachi, Lucia
    Bellazzi, Riccardo
    Chiovato, Luca
    Tucker, Allan
    2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2017, : 205 - 206