The Promise of Machine Learning in Cybersecurity

被引:0
|
作者
Fraley, James B. [1 ]
Cannady, James [1 ]
机构
[1] Nova Southeastern Univ, Coll Engn & Comp, Ft Lauderdale, FL 33314 USA
来源
关键词
Belief Propagation; data mining; dynamic analysis; Locality Sensitive Hashing; malware detection; and static analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Over the last few years' machine learning has migrated from the laboratory to the forefront of operational systems. Amazon, Google and Facebook use machine learning every day to improve customer experiences, suggested purchases or connect people socially with new applications and facilitate personal connections. Machine learning's powerful capability is also there for cybersecurity. Cybersecurity is positioned to leverage machine learning to improve malware detection, triage events, recognize breaches and alert organizations to security issues. Machine learning can be used to identify advanced targeting and threats such as organization profiling, infrastructure vulnerabilities and potential interdependent vulnerabilities and exploits. Machine learning can significantly change the cybersecurity landscape. Malware by itself can represent as many as 3 million new samples an hour. Traditional malware detection and malware analysis is unable to pace with new attacks and variants. New attacks and sophisticated malware have been able to bypass network and end-point detection to deliver cyber-attacks at alarming rates. New techniques like machine learning must be leveraged to address the growing malware problem. This paper describes how machine learning can be used to detect and highlight advanced malware for cyber defense analysts. The results of our initial research and a discussion of future research to extend machine learning is presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Authentic Learning on Machine Learning for Cybersecurity
    Lo, Dan Chia-Tien
    Shahriar, Hossain
    Qian, Kai
    Whitman, Michael
    Wu, Fan
    Thomas, Cassandra
    PROCEEDINGS OF THE 54TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, VOL 2, SIGCSE 2023, 2023, : 1299 - 1299
  • [2] Machine learning in cybersecurity: A review
    Handa, Anand
    Sharma, Ashu
    Shukla, Sandeep K.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (04)
  • [3] The Role of Machine Learning in Cybersecurity
    Apruzzese, Giovanni
    Laskov, Pavel
    de Oca, Edgardo Montes
    Mallouli, Wissam
    Rapa, Luis Burdalo
    Grammatopoulos, Athanasios Vasileios
    Di Franco, Fabio
    DIGITAL THREATS: RESEARCH AND PRACTICE, 2023, 4 (01):
  • [4] Machine Learning and Deep Learning Methods for Cybersecurity
    Xin, Yang
    Kong, Lingshuang
    Liu, Zhi
    Chen, Yuling
    Li, Yanmiao
    Zhu, Hongliang
    Gao, Mingcheng
    Hou, Haixia
    Wang, Chunhua
    IEEE ACCESS, 2018, 6 : 35365 - 35381
  • [5] Quantum Machine Learning: Perspectives in Cybersecurity
    Pastorello, Davide
    COMPUTER SAFETY, RELIABILITY, AND SECURITY. SAFECOMP 2024 WORKSHOPS, 2024, 14989 : 266 - 274
  • [6] A Study of Machine Learning Techniques for Cybersecurity
    Cao Tien Thanh
    2021 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND APPLICATIONS (ACOMP 2021), 2021, : 54 - 61
  • [7] Explainable machine learning in cybersecurity: A survey
    Yan, Feixue
    Wen, Sheng
    Nepal, Surya
    Paris, Cecile
    Xiang, Yang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 12305 - 12334
  • [8] USING MACHINE LEARNING METHODS IN CYBERSECURITY
    Mubarakova, S. R.
    Amanzholova, S. T.
    Uskenbayeva, R. K.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2022, 10 (01): : 69 - 78
  • [9] Machine learning in cybersecurity: a comprehensive survey
    Dasgupta, Dipankar
    Akhtar, Zahid
    Sen, Sajib
    JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2022, 19 (01): : 57 - 106
  • [10] The Promise of Machine Learning for Psychiatry
    Rutherford, Saige
    BIOLOGICAL PSYCHIATRY, 2020, 88 (11) : E53 - E55