Feedback numbers of de Bruijn digraphs

被引:9
|
作者
Xu, Xirong [1 ,2 ]
Cao, Yongchang [1 ]
Xu, Jun-Ming [1 ]
Wu, Yezhou [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
关键词
Feedback vertex set; Feedback number; de Bruijn digraphs; Cycles; Acyclic subgraph; VERTEX SET PROBLEM;
D O I
10.1016/j.camwa.2009.10.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset of vertices of a graph G is called a feedback vertex set of G if its removal results in an acyclic subgraph. Let f (d, n) denote the minimum cardinality over all feedback vertex sets of the de Bruijn digraph B(d, n). This paper proves that for any integers d >= 2 and n >= 2 f(d, n) = {1/n Sigma(i|n) di phi (n/i) for 2 <= n <= 4; d(n)/n + o(nd(n-4)) for n >= 5, where i I n means i divides n, and co(i) is the Euler totient function. (C) 2009 Published by Elsevier Ltd
引用
收藏
页码:716 / 723
页数:8
相关论文
共 50 条
  • [31] Constructing the minimum dominating sets of generalized de Bruijn digraphs
    Dong, Yanxia
    Shan, Erfang
    Kang, Liying
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1501 - 1508
  • [32] On the k-tuple domination of de Bruijn and Kautz digraphs
    Araki, Toru
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 86 - 90
  • [33] ON THE TWIN DOMINATION NUMBER IN GENERALIZED DE BRUIJN AND GENERALIZED KAUTZ DIGRAPHS
    Kuo, Jyhmin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2010, 2 (02) : 199 - 205
  • [34] The k-tuple twin domination in de Bruijn and Kautz digraphs
    Araki, Toru
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6406 - 6413
  • [35] Private Out-Domination Number of Generalized de Bruijn Digraphs
    Marimuthu, G.
    Johnson, B.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 504 - 517
  • [36] The Numbers of De Bruijn Sequences in Extremal Weight Classes
    Li, Ming
    Jiang, Yupeng
    Lin, Dongdai
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2909 - 2914
  • [37] Connected k-tuple twin domination in de Bruijn and Kautz digraphs
    Araki, Toru
    DISCRETE MATHEMATICS, 2009, 309 (21) : 6229 - 6234
  • [38] On Routing in a Two-Tier Overlay Network based on de Bruijn Digraphs
    Darlagiannis, Vasilios
    Mauthe, Andreas
    Heckmann, Oliver
    Liebau, Nicolas
    Steinmetz, Ralf
    2006 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, VOLS 1 AND 2, 2006, : 186 - +
  • [39] Some Necessary Conditions for Feedback Functions of de Bruijn Sequences
    Hu, Daohuan
    Chen, Shiqi
    Xu, Xiaofang
    Xiong, Yazhou
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 8 (02) : 215 - 224
  • [40] A New Necessary Condition for Feedback Functions of de Bruijn Sequences
    Wang, Zhongxiao
    Qi, Wenfeng
    Chen, Huajin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (01) : 152 - 156