Non-idempotent intersection types for the Lambda-Calculus

被引:32
|
作者
Bucciarelli, Antonio [1 ,2 ]
Kesner, Delia [1 ,2 ]
Ventura, Daniel [3 ]
机构
[1] CNRS, Inst Rech Informat Fondamentale, Paris, France
[2] Univ Paris Diderot, Paris, France
[3] Univ Fed Goias, Inst Informat, Goiania, Go, Brazil
关键词
Type Systems; intersection types; quantitative semantics; normalization properties; inhabitation problems; principal typing; STRONG NORMALIZATION; ASSIGNMENT;
D O I
10.1093/jigpal/jzx018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article explores the use of non-idempotent intersection types in the framework of the lambda-calculus. Different topics are presented in a uniform framework: head normalization, weak normalization, weak head normalization, strong normalization, inhabitation, exact bounds and principal typings. The reducibility technique, traditionally used when working with idempotent types, is replaced in this framework by trivial combinatorial arguments.
引用
收藏
页码:431 / 464
页数:34
相关论文
共 50 条