Non-idempotent intersection types for the Lambda-Calculus

被引:32
|
作者
Bucciarelli, Antonio [1 ,2 ]
Kesner, Delia [1 ,2 ]
Ventura, Daniel [3 ]
机构
[1] CNRS, Inst Rech Informat Fondamentale, Paris, France
[2] Univ Paris Diderot, Paris, France
[3] Univ Fed Goias, Inst Informat, Goiania, Go, Brazil
关键词
Type Systems; intersection types; quantitative semantics; normalization properties; inhabitation problems; principal typing; STRONG NORMALIZATION; ASSIGNMENT;
D O I
10.1093/jigpal/jzx018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article explores the use of non-idempotent intersection types in the framework of the lambda-calculus. Different topics are presented in a uniform framework: head normalization, weak normalization, weak head normalization, strong normalization, inhabitation, exact bounds and principal typings. The reducibility technique, traditionally used when working with idempotent types, is replaced in this framework by trivial combinatorial arguments.
引用
收藏
页码:431 / 464
页数:34
相关论文
共 50 条
  • [1] INHABITATION FOR NON-IDEMPOTENT INTERSECTION TYPES
    Bucciarelli, Antonio
    Kesner, Delia
    Della Rocca, Simona Ronchi
    LOGICAL METHODS IN COMPUTER SCIENCE, 2018, 14 (03)
  • [2] NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION
    Bernadet, Alexis
    Graham-Lengrand, Stephane
    LOGICAL METHODS IN COMPUTER SCIENCE, 2013, 9 (04)
  • [3] Non-idempotent intersection types in logical form
    Ehrhard, Thomas
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 2020, 2020, 12077 : 198 - 216
  • [4] A binary modal logic for the intersection types of lambda-calculus
    Valentini, S
    Viale, M
    INFORMATION AND COMPUTATION, 2003, 185 (02) : 211 - 232
  • [5] Plays as Resource Terms via Non-idempotent Intersection Types
    Tsukada, Takeshi
    Ong, C. -H. Luke
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 237 - 246
  • [6] Complexity of Strongly Normalising λ-Terms via Non-idempotent Intersection Types
    Bernadet, Alexis
    Lengrand, Stephane
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, 2011, 6604 : 88 - 107
  • [7] INHABITATION OF TYPES IN THE SIMPLY TYPED LAMBDA-CALCULUS
    DEKKERS, W
    INFORMATION AND COMPUTATION, 1995, 119 (01) : 14 - 17
  • [8] An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus
    Mazza, Damiano
    2012 27TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2012, : 471 - 480
  • [9] Atomic lambda-calculus: a typed lambda-calculus with explicit sharing
    Gundersen, Tom
    Heijltjes, Willem
    Parigot, Michel
    2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, : 311 - 320
  • [10] INTERSECTION TYPES FOR lambda(Gtz)-CALCULUS
    Ghilezan, Silvia
    Ivetic, Jelena
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 82 (96): : 85 - 91