The electromagnetic dark sector

被引:42
|
作者
Beltran Jimenez, Jose [1 ]
Maroto, Antonio L. [1 ]
机构
[1] Univ Complutense Madrid, Dept Fis Teor 1, E-28040 Madrid, Spain
关键词
Quantum fields in curved space-time; Dark energy; WMAP;
D O I
10.1016/j.physletb.2010.02.038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider electromagnetic field quantization in an expanding universe We find that the covariant (Gupta-Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition In this case there are three physical stares, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory The new state is decoupled from the conserved electromagnetic currents. but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [21] Echo of interactions in the dark sector
    Kumar, Suresh
    Nunes, Rafael C.
    PHYSICAL REVIEW D, 2017, 96 (10)
  • [22] Acausality from a dark sector
    Carone, Christopher D.
    PHYSICS LETTERS B, 2014, 730 : 1 - 7
  • [23] Dark sector glueballs at the LHC
    Batz, Austin
    Cohen, Timothy
    Curtin, David
    Gemmell, Caleb
    Kribs, Graham D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (04)
  • [24] Probing the dark sector with PADME
    Raggi, M.
    Cesarotti, C.
    Frankenthal, A.
    Alexander, J.
    Chiodini, G.
    Caricato, A. P.
    Gontad, F.
    Martino, M.
    Oceano, I
    Oliva, F.
    Spagnolo, S.
    Albicocco, P.
    Bossi, F.
    Buonomo, B.
    De Sangro, R.
    Domenici, D.
    Finocchiaro, G.
    Foggetta, L. G.
    Ghigo, A.
    Gianotti, P.
    Piperno, G.
    Sarra, I
    Sciascia, B.
    Spadaro, T.
    Spiriti, E.
    Vilucchi, E.
    Liberti, B.
    Taruggi, C.
    Tsankov, L.
    Georgiev, G.
    Kozhuharov, V
    Ferrarotto, F.
    Leonardi, E.
    Tehrani, F. Safai
    Valente, P.
    Fiore, S.
    Organtini, G. C.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2018, 41 (04):
  • [25] Probing the Dark Sector with Dark Matter Bound States
    An, Haipeng
    Echenard, Bertrand
    Pospelov, Maxim
    Zhang, Yue
    PHYSICAL REVIEW LETTERS, 2016, 116 (15)
  • [26] Interactions in the dark sector of the Universe
    Zimdahl, Winfried
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (02)
  • [27] The NMSSM dark sector constraints
    Gurskaya, Albina V.
    Dolgopolov, Mikhail V.
    XXIII INTERNATIONAL WORKSHOP HIGH ENERGY PHYSICS AND QUANTUM FIELD THEORY (QFTHEP 2017), 2017, 158
  • [28] Preheating and the dark sector of the universe
    Piao, YS
    PHYSICAL REVIEW D, 2005, 71 (02): : 027302 - 1
  • [29] Thermodynamic constraints on the dark sector
    W. J. C. da Silva
    J. E. Gonzalez
    R. Silva
    J. S. Alcaniz
    The European Physical Journal Plus, 135
  • [30] A new force in the dark sector?
    Farrar, Glennys R.
    Rosen, Rachel A.
    PHYSICAL REVIEW LETTERS, 2007, 98 (17)