Ultrasmall Mode Volume Hyperbolic Nanocavities for Enhanced Light-Matter Interaction at the Nanoscale

被引:47
|
作者
Indukuri, S. R. K. Chaitanya [1 ,2 ]
Bar-David, Jonathan [1 ,2 ]
Mazurski, Noa [1 ,2 ]
Levy, Uriel [1 ,2 ]
机构
[1] Hebrew Univ Jerusalem, Fac Sci, Dept Appl Phys, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel
关键词
hyperbolic nanocavities; quantum dots; Purcell factor; light-matter interaction; far-field radiation enhancement; nanoscale cavity quantum electrodynamics; SINGLE QUANTUM-DOT; SPONTANEOUS EMISSION; PLASMON POLARITONS; ROOM-TEMPERATURE; CAVITY; METAMATERIALS; MICROCAVITY;
D O I
10.1021/acsnano.9b05730
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cavities are the building blocks for multiple photonic applications from linear to nonlinear optics and from classical optics to quantum electrodynamics. Hyperbolic metamaterial cavities are one class of optical cavities that have recently been realized and shown to possess desirable characteristics such as engineered refractive indices and ultrasmall mode volumes, both beneficial for enhancement of light-matter interactions at the nanoscale. We hereby report the design, fabrication, and experimental characterization of nanoscale hyperbolic metamaterial cavities at the visible frequency. We show experimentally that these nanocavities enhance the light-matter interaction at the nanoscale and demonstrate increased photonic density of states and enhanced free space radiation efficiency of quantum dots coupled to such cavities, thus demonstrating the importance of hyperbolic metamaterial cavities for applications in solid-state light sources, quantum technologies, and cavity quantum electrodynamics.
引用
收藏
页码:11770 / 11780
页数:11
相关论文
共 50 条
  • [31] Coherent delocalization in the light-matter interaction
    Stritzelberger, Nadine
    Kempf, Achim
    PHYSICAL REVIEW D, 2020, 101 (03)
  • [32] Control of light-matter interaction in microresonators
    Bayer, M
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4): : 393 - 397
  • [33] Light-matter interaction at atomic scales
    Gutzler, Rico
    Garg, Manish
    Ast, Christian R.
    Kuhnke, Klaus
    Kern, Klaus
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 441 - 453
  • [34] Thermal process of light-matter interaction
    Kotake, Susumu
    Microscale Thermophysical Engineering, 1 (02): : 171 - 179
  • [35] Light-matter interaction in doped microcavities
    Averkiev, N. S.
    Glazov, M. M.
    PHYSICAL REVIEW B, 2007, 76 (04):
  • [36] LIGHT-MATTER INTERACTION Perfect reflections
    Csontos, Dan
    NATURE PHYSICS, 2008, 4 (12) : 908 - 908
  • [37] Light-matter interaction - Experimental aspects
    Klingshirn, CF
    SPECTROSCOPY AND DYNAMICS OF COLLECTIVE EXCITATIONS IN SOLIDS, 1997, 356 : 85 - 122
  • [38] Light-matter Interaction and Zeta Functions
    Reyes-Bustos, Cid
    Wakayama, Masato
    NTT Technical Review, 2024, 22 (09): : 65 - 72
  • [39] Polaritonic nonlocality in light-matter interaction
    Rajabali, Shima
    Cortese, Erika
    Beck, Mattias
    De Liberato, Simone
    Faist, Jerome
    Scalari, Giacomo
    NATURE PHOTONICS, 2021, 15 (09) : 690 - 695
  • [40] Mimicking chiral light-matter interaction
    Nechayev, Sergey
    Banzer, Peter
    PHYSICAL REVIEW B, 2019, 99 (24)