The eigenvalues of the graphs D(4,q)

被引:6
|
作者
Moorhouse, G. Eric [1 ]
Sun, Shuying [2 ]
Williford, Jason [1 ]
机构
[1] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Expander graph; Cayley graph; Graph spectrum; CONSTRUCTION;
D O I
10.1016/j.jctb.2017.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The graphs D(k,q) have connected components CD(k,q) giving the best known bounds on extremal problems with forbidden even cycles, and are denser than the well-known graphs of Lubotzky, Phillips, Sarnak [14] and Margulis [15,16]. Despite this, little is known about the spectrum and expansion properties of these graphs. In this paper we find the spectrum for k = 4, the smallest open case. For each prime power q, the graph D(4,q) is q-regular graph on 2q(4) vertices, all of whose eigenvalues other than q are bounded in absolute value by 2 root q. Accordingly, these graphs are good expanders, in fact very close to Ramanujan. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] On the extensional eigenvalues of graphs
    Cheng, Tao
    Feng, Lihua
    Liu, Weijun
    Lu, Lu
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 408 (408)
  • [42] ON THE EIGENVALUES OF FIREFLY GRAPHS
    Hong, W. X.
    You, L. H.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (03) : 1 - 9
  • [43] The closeness eigenvalues of graphs
    Lu Zheng
    Bo Zhou
    Journal of Algebraic Combinatorics, 2023, 58 : 741 - 760
  • [44] EIGENVALUES AND SEPARATION IN GRAPHS
    MILLER, Z
    PRITIKIN, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 181 : 187 - 219
  • [45] Eigenvalues and triangles in graphs
    Lin, Huiqiu
    Ning, Bo
    Wu, Baoyindureng
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 258 - 270
  • [46] Higher eigenvalues of graphs
    Kelner, Jonathan A.
    Lee, James R.
    Price, Gregory N.
    Teng, Shang-Hua
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 735 - 744
  • [47] On the eigenvalues of Aα-matrix of graphs
    Liu, Shuting
    Das, Kinkar Chandra
    Shu, Jinlong
    DISCRETE MATHEMATICS, 2020, 343 (08)
  • [48] The closeness eigenvalues of graphs
    Zheng, Lu
    Zhou, Bo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (03) : 741 - 760
  • [49] THE DISTRIBUTION OF EIGENVALUES OF GRAPHS
    CAO, DS
    YUAN, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 216 : 211 - 224
  • [50] COMPARISON OF STEKLOV EIGENVALUES AND LAPLACIAN EIGENVALUES ON GRAPHS
    Shi, Yongjie
    Yu, Chengjie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (04) : 1505 - 1517