Inverse scattering via Heisenberg's uncertainty principle

被引:75
|
作者
Chen, Y
机构
[1] Yale University, Department of Computer Science, New Haven, CT 06520-8285
关键词
D O I
10.1088/0266-5611/13/2/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a stable method for the fully nonlinear inverse scattering problem of the Helmholtz equation in two dimensions. The new approach is based on the observation that ill-posedness of the inverse problem can be beneficially used to solve it. This means that not all equations of the nonlinear problem are strongly nonlinear due to the ill-posedness, and that when solved recursively in a proper order, they can be reduced to a collection of essentially linear problems. The algorithm requires multi-frequency scattering data, and the recursive linearization is acheived by a standard perturbational analysis on the wavenumber k. At each frequency k, the algorithm determines a forward model which produces the prescribed scattering data. It first solves nearly linear equations at the lowest k to obtain low-frequency modes of the scatterer. The approximation is used to linearize equations at the next higher k to produce a better approximation which contains more modes of the scatterer, and so on, until a sufficiently high wavenumber k where the dominant modes of the scatterer are essentially recovered. The robustness of the procedure is demonstrated by several numerical examples.
引用
收藏
页码:253 / 282
页数:30
相关论文
共 50 条
  • [21] ON A GENERALISATION OF HEISENBERG UNCERTAINTY PRINCIPLE
    INGARDEN, RS
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1970, 18 (01): : 39 - &
  • [23] Heisenberg's uncertainty principle in the PTOLEMY project: A theory update
    Apponi, A.
    Betti, M. G.
    Borghesi, M.
    Boyarsky, A.
    Canci, N.
    Cavoto, G.
    Chang, C.
    Cheianov, V
    Cheipesh, Y.
    Chung, W.
    Cocco, A. G.
    Colijn, A. P.
    D'Ambrosio, N.
    de Groot, N.
    Esposito, A.
    Faverzani, M.
    Ferella, A.
    Ferri, E.
    Ficcadenti, L.
    Frederico, T.
    Gariazzo, S.
    Gatti, F.
    Gentile, C.
    Giachero, A.
    Hochberg, Y.
    Kahn, Y.
    Lisanti, M.
    Mangano, G.
    Marcucci, L. E.
    Mariani, C.
    Marques, M.
    Menichetti, G.
    Messina, M.
    Mikulenko, O.
    Monticone, E.
    Nucciotti, A.
    Orlandi, D.
    Pandolfi, F.
    Parlati, S.
    Pepe, C.
    Perez de los Heros, C.
    Pisanti, O.
    Polini, M.
    Polosa, A. D.
    Puiu, A.
    Rago, I
    Raitses, Y.
    Rajteri, M.
    Rossi, N.
    Rozwadowska, K.
    PHYSICAL REVIEW D, 2022, 106 (05)
  • [24] An Application of Heisenberg's Uncertainty Principle to Line Source Radiation
    Young, Jeffrey L.
    Wilson, Christopher D.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2015, : 1060 - 1061
  • [25] Hierarchy of local minimum solutions of Heisenberg's uncertainty principle
    Hoffman, DK
    Kouri, DJ
    PHYSICAL REVIEW LETTERS, 2000, 85 (25) : 5263 - 5267
  • [26] Incorporating Heisenberg's Uncertainty Principle into Quantum Multiparameter Estimation
    Lu, Xiao-Ming
    Wang, Xiaoguang
    PHYSICAL REVIEW LETTERS, 2021, 126 (12)
  • [27] Microscope and spectroscope results are not limited by Heisenberg's Uncertainty Principle!
    Prasad, Narasimha S.
    Roychoudhuri, Chandra
    NATURE OF LIGHT: WHAT ARE PHOTONS IV, 2011, 8121
  • [28] Open Timelike Curves Violate Heisenberg's Uncertainty Principle
    Pienaar, J. L.
    Ralph, T. C.
    Myers, C. R.
    PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [29] Direct demonstration of Heisenberg's uncertainty principle in a mesoscopic superconductor
    Matters, M
    Elion, WJ
    Geigenmuller, U
    Mooij, JE
    QUANTUM COHERENCE AND DECOHERENCE: FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 1996, : 171 - 174
  • [30] Hierarchy of local minimum solutions of Heisenberg's uncertainty principle
    Hoffman, DK
    Kouri, DJ
    PHYSICAL REVIEW A, 2002, 65 (05): : 13