Present bounds on the relativistic energy density in the Universe from cosmological observables

被引:41
|
作者
Mangano, Gianpiero
Melchiorri, Alessandro
Mena, Olga
Miele, Gennaro
Slosar, Anze
机构
[1] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy
[2] Univ Naples Federico II, Sez INFN, I-80126 Naples, Italy
[3] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
[4] Univ Roma La Sapienza, Sez INFN, I-00185 Rome, Italy
[5] Univ Oxford, Oxford OX3 RH1, England
关键词
CMBR experiments; cosmological neutrinos; big bang nucleosynthesis;
D O I
10.1088/1475-7516/2007/03/006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the present bounds on the relativistic energy density in the Universe parametrized in terms of the effective number of neutrinos N-v(eff) using the most recent cosmological data on cosmic microwave background (CMB) temperature anisotropies and polarization, large scale galaxy clustering from the Sloan Digital Sky Survey (SDSS) and 2dF, luminosity distances of type Ia supernovae, Lyman-alpha absorption clouds (Ly-alpha), the baryonic acoustic oscillations (BAO) detected in the luminous red galaxies of the SDSS and, finally, big bang nucleosynthesis (BBN) predictions for He-4 and deuterium abundances. We find N-v(eff) = 5.2(-2.2)(+2.7) from CMB and large scale structure data, while adding Ly-alpha and BAO we obtain Ne-v(eff) = 4.6(-1.5)(+1.6) at 95% c. l. These results show some tension with the standard value N-v(eff) = 3.046 as well as with the BBN range N-v(eff) = 3.1(-1.2)(+1.4) at 95% c. l., though the discrepancy is slightly below the 2-s level. In general, considering a smaller set of data weakens the constraints on N-v(eff). We emphasize the impact of an improved upper limit (or measurement) of the primordial value of He-3 abundance in clarifying the issue of whether the value of N(v)(ef)f at early (BBN) and more recent epochs coincide.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Density content of nuclear symmetry energy from nuclear observables
    Agrawal, B. K.
    PRAMANA-JOURNAL OF PHYSICS, 2014, 83 (05): : 695 - 704
  • [22] The cosmological energy density of neutrinos from oscillation measurements
    Abazajian, K
    NEUTRINO FACTORIES AND SUPERBEAMS, 2004, 721 : 256 - 260
  • [23] Vacuum energy density measured from cosmological data
    Prat, J.
    Hogan, C.
    Chang, C.
    Frieman, J.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (06):
  • [24] Clustering dark energy imprints on cosmological observables of the gravitational field
    Hassani, Farbod
    Adamek, Julian
    Kunz, Martin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (04) : 4514 - 4529
  • [25] Cosmological bounds on oscillating dark energy models
    Jain, Deepak
    Dev, Abha
    Alcaniz, J. S.
    PHYSICS LETTERS B, 2007, 656 (1-3) : 15 - 18
  • [26] COSMOLOGICAL MODELS THAT DESCRIBE PARTICLE CREATION IN THE EARLY UNIVERSE AND EVOLVE INTO THE PRESENT-DAY UNIVERSE
    DELEON, JP
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) : 3546 - 3552
  • [27] Baryons in the Universe from Cosmological Simulations
    Durier, F.
    Pacheco, J. A. de Freitas
    I COSMOSUL: COSMOLOGY AND GRAVITATION IN THE SOUTHERN CONE, 2012, 1471 : 10 - 15
  • [28] Our Universe from the cosmological constant
    Barrau, Aurelien
    Linsefors, Linda
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (12):
  • [29] NEUTRINO ENERGY DENSITY OF UNIVERSE
    BANDYOPADHYAY, P
    CHAUDHURI, PR
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1970, 66 (01): : 238 - +
  • [30] The gravitational energy density of the Universe
    Formiga, J. B.
    Goncalves, V. R.
    MODERN PHYSICS LETTERS A, 2021, 36 (18)