A Robin-Robin preconditioner for an advection-diffusion problem

被引:14
|
作者
Achdou, Y
Nataf, F
机构
[1] INSA Rennes, Rennes, France
[2] Ecole Polytech, CMAP, CNRS, URA 756, F-91128 Palaiseau, France
关键词
D O I
10.1016/S0764-4442(97)83556-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Neumann-Neumann method is used as a preconditioner in domain decomposition methods applied to symmetric problems. We generalize it to the case of nonsymmetric operators. The new preconditioner is based on solving boundary value problems with Robin boundary conditions. Its derivation at the continuous and discrete levels are given. Numerical results are shown for both conforming and nonconforming grids (mortar method).
引用
收藏
页码:1211 / 1216
页数:6
相关论文
共 50 条
  • [31] The Monotone Robin-Robin Domain Decomposition Methods for the Elliptic Problems with Stefan-Boltzmann Conditions
    Chen, Wenbin
    Cheng, Jin
    Yamamoto, Masahiro
    Zhang, Weili
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 8 (03) : 642 - 662
  • [32] An adaptive BDDC preconditioner for advection-diffusion problems with a stabilized finite element discretization
    Peng, Jie
    Shu, Shi
    Wang, Junxian
    Zhong, Liuqiang
    APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 184 - 197
  • [33] Determination of Robin coefficient in a fractional diffusion problem
    Wei, Ting
    Wang, Jun-Gang
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7948 - 7961
  • [34] A Robin-Robin Domain Decomposition Method for a Stokes-Darcy Structure Interaction with a Locally Modified Mesh
    Wang, Zhaohui
    Li, Zhilin
    Lubkin, Sharon
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (04): : 435 - 446
  • [35] On a reaction-advection-diffusion equation with Robin and free boundary conditions
    Zhu Dandan
    Ren Jingli
    APPLICABLE ANALYSIS, 2020, 99 (08) : 1344 - 1358
  • [36] AN ARTIFICIAL BOUNDARY-CONDITION FOR AN ADVECTION-DIFFUSION PROBLEM
    LOHEAC, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (10): : 695 - 698
  • [37] A CONSERVATIVE PARTICLE APPROXIMATION FOR A BOUNDARY ADVECTION-DIFFUSION PROBLEM
    LUCQUINDESREUX, B
    MASGALLIC, S
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (06): : 757 - 791
  • [38] Domain decomposition for an advection-diffusion problem with parabolic layers
    Boglaev, I
    Duoba, V
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) : 27 - 53
  • [39] Numerical approximation of a control problem for advection-diffusion processes
    Quarteroni, A
    Rozza, G
    Dede, L
    Quaini, A
    SYSTEM MODELING AND OPTIMIZATION, 2006, 199 : 261 - +
  • [40] An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems
    Lasser, C
    Toselli, A
    MATHEMATICS OF COMPUTATION, 2003, 72 (243) : 1215 - 1238