Predicting reaction equilibria for destabilized metal hydride decomposition reactions for reversible hydrogen storage

被引:85
|
作者
Alapati, Sudhakar V.
Johnson, J. Karl
Sholl, David S. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[3] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2007年 / 111卷 / 04期
关键词
D O I
10.1021/jp065117+
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reversible storage of hydrogen still remains one of the biggest challenges for widespread use of hydrogen as a fuel. Light metal hydrides have high hydrogen content but are typically too thermodynamically stable. Destabilization of metal hydrides is an effective way to improve their thermodynamics. First principles calculations have proven to be effective for screening potential destabilized reactions, but these calculations have previously been limited to examining approximations for reaction enthalpies. We have used density functional theory calculations to calculate the reaction free energy and van't Hoff plots for a variety of potential destabilized metal hydride reactions. Our calculations suggest a multistage approach for efficiently screening new classes of metal hydrides prior to experimental studies.
引用
收藏
页码:1584 / 1591
页数:8
相关论文
共 50 条
  • [41] Hydrogen storage in metal hydride under action of sunlight
    Solonin, YM
    Dan'ko, DB
    Galiy, OZ
    Kossko, L
    Kolbasov, G
    Rusetskii, IA
    Fuel Cell Technologies: State and Perspectives, 2005, 202 : 193 - 198
  • [42] Practical modeling of metal hydride hydrogen storage systems
    Gadre, SA
    Ebner, AD
    Al-Muhtaseb, SA
    Ritter, JA
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (08) : 1713 - 1722
  • [43] Identification of destabilized metal hydrides for hydrogen storage using first principles calculations
    Alapati, SV
    Johnson, JK
    Sholl, DS
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (17): : 8769 - 8776
  • [44] Metal hydride hydrogen storage and compression systems for energy storage technologies
    Tarasov, Boris P.
    Fursikov, Pavel V.
    Volodin, Alexey A.
    Bocharnikov, Mikhail S.
    Shimkus, Yustinas Ya
    Kashin, Aleksey M.
    Yartys, Volodymyr A.
    Chidziva, Stanford
    Pasupathi, Sivakumar
    Lototskyy, Mykhaylo V.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (25) : 13647 - 13657
  • [45] REACTION-KINETICS OF HYDROGEN METAL HYDRIDE SYSTEMS
    WANG, XL
    SUDA, S
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1990, 15 (08) : 569 - 577
  • [46] Experimental study of hydrogen storage with reaction heat recovery using metal hydride in a totalized hydrogen energy utilization system
    Tange, Manabu
    Maeda, Tetsuhiko
    Nakano, Akihiro
    Ito, Hiroshi
    Kawakami, Yoshiaki
    Masuda, Masao
    Takahashi, Toru
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (18) : 11767 - 11776
  • [47] Numerical simulation of the hydrogen storage with reaction heat recovery using metal hydride in the totalized hydrogen energy utilization system
    Maeda, Tetsuhiko
    Nishida, Keiichi
    Tange, Manabu
    Takahashi, Toru
    Nakano, Akihiro
    Ito, Hiroshi
    Hasegawa, Yasuo
    Masuda, Masao
    Kawakami, Yoshiaki
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 10845 - 10854
  • [48] Hydrogen mobility in the lightest reversible metal hydride, LiBeH3
    Eugene Mamontov
    Alexander I. Kolesnikov
    Sujatha Sampath
    Jeffery L. Yarger
    Scientific Reports, 7
  • [49] Hydrogen mobility in the lightest reversible metal hydride, LiBeH3
    Mamontov, Eugene
    Kolesnikov, Alexander I.
    Sampath, Sujatha
    Yarger, Jeffery L.
    SCIENTIFIC REPORTS, 2017, 7
  • [50] Nanoconfined light metal hydrides for reversible hydrogen storage
    Petra E. de Jongh
    Mark Allendorf
    John J. Vajo
    Claudia Zlotea
    MRS Bulletin, 2013, 38 : 488 - 494