SOT-MRAM based Analog in-Memory Computing for DNN inference

被引:35
|
作者
Doevenspeck, J. [1 ,2 ]
Garello, K. [1 ]
Verhoef, B. [1 ]
Degraeve, R. [1 ]
Van Beek, S. [1 ]
Crotti, D. [1 ]
Yasin, F. [1 ]
Couet, S. [1 ]
Jayakumar, G. [1 ]
Papistas, I. A. [1 ]
Debacker, P. [1 ]
Lauwereins, R. [1 ,2 ]
Dehaene, W. [1 ,2 ]
Kar, G. S. [1 ]
Cosemans, S. [1 ]
Mallik, A. [1 ]
Verkest, D. [1 ]
机构
[1] IMEC, Leuven, Belgium
[2] KU Leuven ESAT, Leuven, Belgium
关键词
D O I
10.1109/vlsitechnology18217.2020.9265099
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural network (DNN) inference requires a massive amount of matrix-vector multiplications which can be computed efficiently on memory arrays in an analog fashion. This approach requires highly resistive memory devices (>MS 2) with low resistance variability to implement DNN weight memories. We propose an optimized Spin-Orbit Torque MRAM (SOTMRAM) as weight memory in Analog in-Memory Computing (AiMC) systems for DNN inference. In SOT-MRAM the write and read path are decoupled. This allows changing the MTJ resistance to the high levels required for AiMC by tuning the tunnel barrier thickness without affecting the writing. The target resistance level and variation are derived from an algorithm driven design-technology-co-optimization (DTCO) study. Resistance levels are obtained from IR-drop simulations of a convolutional neural network (CNN). Variation limits are obtained by testing two noise-resilient CNNs with conductance variability. Finally, we demonstrate experimentally that the requirements for analog DNN inference are met by SOT-MRAM stack optimization.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Exploring a SOT-MRAM Based In-Memory Computing for Data Processing
    He, Zhezhi
    Zhang, Yang
    Angizi, Shaahin
    Gong, Boqing
    Fan, Deliang
    IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, 2018, 4 (04): : 676 - 685
  • [2] Low Power In-Memory Computing based on Dual-Mode SOT-MRAM
    Parveen, Farhana
    Angizi, Shaahin
    He, Zhezhi
    Fan, Deliang
    2017 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2017,
  • [3] High Performance and Energy-Efficient In-Memory Computing Architecture based on SOT-MRAM
    He, Zhezhi
    Angizi, Shaahin
    Parveen, Farhana
    Fan, Deliang
    PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH 2017), 2017, : 97 - 102
  • [4] IMFlexCom: Energy Efficient In-Memory Flexible Computing Using Dual-Mode SOT-MRAM
    Parveen, Farhana
    Angizi, Shaahin
    Fan, Deliang
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2018, 14 (03)
  • [5] A 6T-3M SOT-MRAM for in-memory computing with reconfigurable arith- metic operations
    Jin, Xing
    Yin, Ningyuan
    Chen, Weichong
    Li, Ximing
    Zhao, Guihua
    Yu, Zhiyi
    IEICE ELECTRONICS EXPRESS, 2023, 20 (11):
  • [6] MRAM-based Analog Sigmoid Function for In-memory Computing
    Amin, Md Hasibul
    Elbtity, Mohammed
    Mohammadi, Mohammadreza
    Zand, Ramtin
    PROCEEDINGS OF THE 32ND GREAT LAKES SYMPOSIUM ON VLSI 2022, GLSVLSI 2022, 2022, : 319 - 323
  • [7] High-Performance in-memory Logic Scheme using Unipolar Switching SOT-MRAM
    Zhu, Haonan
    Wu, Bi
    Chen, Ke
    Yan, Chenggang
    Liu, Weiqiang
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (NANO), 2022, : 112 - 115
  • [8] MLiM: High-Performance Magnetic Logic in-Memory Scheme With Unipolar Switching SOT-MRAM
    Wu, Bi
    Zhu, Haonan
    Chen, Ke
    Yan, Chenggang
    Liu, Weiqiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (06) : 2412 - 2424
  • [9] High density SOT-MRAM memory array based on a single transistor
    Alhalabi, Rana
    Nowak, Etienne
    Prejbeanu, Ioan-lucian
    Di Pendina, Gregory
    2018 NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS 2018), 2018,
  • [10] All-Electrical Control of Compact SOT-MRAM: Toward Highly Efficient and Reliable Non-Volatile In-Memory Computing
    Lin, Huai
    Luo, Xi
    Liu, Long
    Wang, Di
    Zhao, Xuefeng
    Wang, Ziwei
    Xue, Xiaoyong
    Zhang, Feng
    Xing, Guozhong
    MICROMACHINES, 2022, 13 (02)