Fast Incremental Conformance Analysis for Interactive Process Discovery

被引:6
|
作者
Dixit, P. M. [1 ,2 ]
Buijs, J. C. A. M. [1 ]
Verbeek, H. M. W. [1 ]
van der Aalst, W. M. P. [3 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] Philips Res, Eindhoven, Netherlands
[3] Rhein Westfal TH Aachen, Aachen, Germany
来源
关键词
Incremental conformance; Interactive process discovery; Domain knowledge; Process mining; PETRI NETS;
D O I
10.1007/978-3-319-93931-5_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Interactive process discovery allows users to specify domain knowledge while discovering process models with the help of event logs. Typically the coherence of an event log and a process model is calculated using conformance analysis. Many state-of-the-art conformance techniques emphasize on the correctness of the results, and hence can be slow, impractical and undesirable in interactive process discovery setting, especially when the process models are complex. In this paper, we present a framework (and its application) to calculate conformance fast enough to guide the user in interactive process discovery. The proposed framework exploits the underlying techniques used for interactive process discovery in order to incrementally update the conformance results. We trade the accuracy of conformance for performance. However, the user is also provided with some diagnostic information, which can be useful for decision making in an interactive process discovery setting. The results show that our approach can be considerably faster than the traditional approaches and hence better suited in an interactive setting.
引用
收藏
页码:163 / 175
页数:13
相关论文
共 50 条
  • [21] Batch fast update algorithm for incremental association rule discovery
    Ariya, Araya
    Kreesuradej, Worapoj
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 17TH '12), 2012, : 799 - 802
  • [22] A Generic Trace Ordering Framework for Incremental Process Discovery
    Schuster, Daniel
    Domnitsch, Emanuel
    van Zelst, Sebastiaan J.
    van Der Aalst, Wil M. P.
    ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 : 264 - 277
  • [23] Incremental Process Discovery using Petri Net Synthesis
    Badouel, Eric
    Schlachter, Uli
    FUNDAMENTA INFORMATICAE, 2017, 154 (1-4) : 1 - 13
  • [24] Incremental Discovery of Process Models Using Trace Fragments
    Schuster, Daniel
    Foecking, Niklas
    van Zelst, Sebastiaan J.
    van der Aalst, Wil M. P.
    BUSINESS PROCESS MANAGEMENT, BPM 2023, 2023, 14159 : 55 - 73
  • [25] Cortado: A dedicated process mining tool for interactive process discovery
    Schuster, Daniel
    van Zelst, Sebastiaan J.
    van der Aalst, Wil M. P.
    SOFTWAREX, 2023, 22
  • [26] INCREMENTAL FAST SUBCLASS DISCRIMINANT ANALYSIS
    Chumachenko, Kateryna
    Raitoharju, Jenni
    Gabbouj, Moncef
    Iosifidis, Alexandros
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1771 - 1775
  • [27] Incremental discovery of new defects: application to screwing process monitoring
    Ferhat, Mahmoud
    Ritou, Mathieu
    Leray, Philippe
    Le Du, Nicolas
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2021, 70 (01) : 369 - 372
  • [28] Freezing Sub-models During Incremental Process Discovery
    Schuster, Daniel
    van Zelst, Sebastiaan J.
    van der Aalst, Wil M. P.
    CONCEPTUAL MODELING, ER 2021, 2021, 13011 : 14 - 24
  • [29] Experimenting with an OLAP Approach for Interactive Discovery in Process Mining
    Pizarro, Gustavo
    Sepulveda, Marcos
    BUSINESS PROCESS MANAGEMENT WORKSHOPS( BPM 2014), 2015, 202 : 317 - 329
  • [30] Interactive Multi-interest Process Pattern Discovery
    Vazifehdoostirani, Mozhgan
    Genga, Laura
    Lu, Xixi
    Verhoeven, Rob
    van Laarhoven, Hanneke
    Dijkman, Remco
    BUSINESS PROCESS MANAGEMENT, BPM 2023, 2023, 14159 : 303 - 319