Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy

被引:49
|
作者
Sengupta, Atanu
Brar, Navpreet
Davis, E. James
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
bacteria; pollen; nanocolloidal silver; surface-enhanced Raman spectroscopy;
D O I
10.1016/j.jcis.2007.02.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Instrumentation has been developed to detect and characterize airborne pollen and bacteria rapidly by injecting a bioaerosol into a nanocolloidal suspension of silver particles using a micropump. The biological particles were mixed with the silver colloid in order to deposit the metallic particles on the surface of the bioanalyte. The silver/bioanalyte suspension was pumped through a light scattering cuvette, and the enhanced Raman spectrum was recorded. Surface-enhanced Raman spectra are presented for tree pollen (cottonwood and redwood pollen) and a bacterium (Escherichia coli), and the E. coli spectra are compared with results obtained from the literature and with results obtained previously by mixing various concentrations of the bioanalyte with the silver colloid. Although the system has not been optimized to maximize the Raman spectra, it is shown spectra can be obtained rapidly. Some assignments of the chemical bonds associated with the spectra are based on previously published results for bacteria and pollen. (c) 2007 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [1] Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)
    Sengupta, A
    Laucks, ML
    Dildine, N
    Drapala, E
    Davis, EJ
    JOURNAL OF AEROSOL SCIENCE, 2005, 36 (5-6) : 651 - 664
  • [2] Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)
    Sengupta, A.
    Laucks, M.L.
    Dildine, N.
    Drapala, E.
    Davis, E.J.
    Journal of Aerosol Science, 1600, 36 (5-6): : 651 - 664
  • [3] Detection of bacteria by surface-enhanced Raman spectroscopy
    Atanu Sengupta
    Mirna Mujacic
    E. James Davis
    Analytical and Bioanalytical Chemistry, 2006, 386 : 1379 - 1386
  • [4] Surface-enhanced Raman spectroscopy for the detection of microplastics
    Mikac, L.
    Rigo, I.
    Himics, L.
    Tolic, A.
    Ivanda, M.
    Veres, M.
    APPLIED SURFACE SCIENCE, 2023, 608
  • [5] Detection of bacteria by surface-enhanced Raman spectroscopy
    Sengupta, Atanu
    Mujacic, Mirna
    Davis, E. James
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 386 (05) : 1379 - 1386
  • [6] Ultrasensitive detection and characterization of posttranslational modifications using surface-enhanced Raman spectroscopy
    Sundararajan, Narayan
    Mao, Danqian
    Chan, Selena
    Koo, Tae-Woong
    Su, Xing
    Sun, Lei
    Zhang, Jingwu
    Sung, Kung-Bin
    Yamakawa, Mineo
    Gafken, Philip R.
    Randolph, Tim
    McLerran, Dale
    Feng, Ziding
    Berlin, Andrew A.
    Roth, Mark B.
    ANALYTICAL CHEMISTRY, 2006, 78 (11) : 3543 - 3550
  • [7] Applications of surface-enhanced Raman spectroscopy in detection fields
    Lin, Ting
    Song, Ya-Li
    Liao, Juan
    Liu, Fang
    Zeng, Ting-Ting
    NANOMEDICINE, 2020, 15 (30) : 2971 - 2990
  • [8] Cypermethrin insecticide detection by surface-enhanced Raman spectroscopy
    Puente, Carlos
    Pineda, Nayely
    Lopez, Israel
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2023, 98 (08) : 1863 - 1867
  • [9] Chemical agent detection by surface-enhanced Raman spectroscopy
    Farquharson, S
    Gift, A
    Maksymiuk, P
    Inscore, F
    Smith, W
    Morrisey, K
    Christesen, SD
    CHEMICAL AND BIOLOGICAL POINT SENSORS FOR HOMELAND DEFENSE, 2004, 5269 : 16 - 22
  • [10] Applications of surface-enhanced Raman spectroscopy in environmental detection
    Terry, Lynn R.
    Sanders, Sage
    Potoff, Rebecca H.
    Kruel, JacobW.
    Jain, Manan
    Guo, Huiyuan
    ANALYTICAL SCIENCE ADVANCES, 2022, 3 (3-4): : 113 - 145