Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications

被引:192
|
作者
Rivera-Briso, Ariagna L. [1 ]
Serrano-Aroca, Angel [2 ]
机构
[1] Univ Catolica Valencia San Vicente Martir, Escuela Doctorado, C Guillem de Castro 65, Valencia 46008, Spain
[2] Univ Catolica Valencia San Vicente Martir, Fac Vet & Ciencias Expt, C Guillem de Castro 94, Valencia 46001, Spain
关键词
poly(3-hydroxybutyrate-co-3-hydroxyvalerate); mechanical strength; thermal properties; electrical properties; wettability; biological properties; antimicrobial activity; water sorption; scaffolds; advanced applications; HALOARCHAEA-PRODUCED POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE); 3-DIMENSIONAL NANOCOMPOSITE SCAFFOLDS; POLYHYDROXYBUTYRATE-CO-VALERATE; MECHANICAL-PROPERTIES; PHBV SCAFFOLDS; POLYHYDROXYALKANOATE PHA; SURFACE MODIFICATION; COMPOSITE SCAFFOLDS; THERMAL-DEGRADATION; UV POLYMERIZATION;
D O I
10.3390/polym10070732
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and porosity, among others, limiting its application. For this reason, many researchers around the world are currently working on how to overcome the drawbacks of this promising material. This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination of PHBV with other materials from a variety of different structures and properties, such as other polymers, natural fibres, carbon nanomaterials, nanocellulose, nanoclays, and nanometals, producing a wide range of composite biomaterials with increased potential applications. Finally, the most important methods to fabricate porous PHBV scaffolds for tissue engineering applications are presented. Even though great advances have been achieved so far, much research needs to be conducted still, in order to find new alternative enhancement strategies able to produce advanced PHBV-based materials able to overcome many of these challenges.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] BIODEGRADATION OF MICROBIAL COPOLYESTERS - POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE) AND POLY(3-HYDROXYBUTYRATE-CO-4-HYDROXYBUTYRATE)
    DOI, Y
    KANESAWA, Y
    KUNIOKA, M
    SAITO, T
    MACROMOLECULES, 1990, 23 (01) : 26 - 31
  • [22] COCRYSTALLIZATION OF ISOTHERMALLY CRYSTALLIZED POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)
    YOSHIE, N
    SAKURAI, M
    INOUE, Y
    CHUJO, R
    MACROMOLECULES, 1992, 25 (07) : 2046 - 2048
  • [23] Enzymatic Hydrolysis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Scaffolds
    Kovalcik, Adriana
    Obruca, Stanislav
    Kalina, Michal
    Machovsky, Michal
    Enev, Vojtech
    Jakesova, Michaela
    Sobkova, Marketa
    Marova, Ivana
    MATERIALS, 2020, 13 (13) : 1 - 21
  • [24] MICROSTRUCTURE OF BACTERIALLY SYNTHESIZED POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)
    KAMIYA, N
    YAMAMOTO, Y
    INOUE, Y
    CHUJO, R
    DOI, Y
    MACROMOLECULES, 1989, 22 (04) : 1676 - 1682
  • [25] The reactive extrusion of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
    Bai, Zhong-Ai
    Chen, Yan-Mo
    He, Jing
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2009, 25 (12): : 119 - 121
  • [26] BIOSYNTHESIS OF POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE) IN RHODOCOCCUS RUBER
    ANDERSON, AJ
    WILLIAMS, DR
    DAWES, EA
    EWING, DF
    CANADIAN JOURNAL OF MICROBIOLOGY, 1995, 41 : 4 - 13
  • [27] Viscoelastic characterization of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
    Choi, HJ
    Kim, J
    Jhon, MS
    POLYMER, 1999, 40 (14) : 4135 - 4138
  • [28] Thermal depolymerization mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
    Hengxue Xiang
    Xiaoshuang Wen
    Xiaohui Miu
    Yan Li
    Zhe Zhou
    Meifang Zhu
    ProgressinNaturalScience:MaterialsInternational, 2016, 26 (01) : 58 - 64
  • [29] Microencapsulation of antibiotic rifampicin in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
    N. Durán
    M. A. Alvarenga
    E. C. Da Silva
    P. S. Melo
    P. D. Marcato
    Archives of Pharmacal Research, 2008, 31 : 1509 - 1516
  • [30] Thermal analyses of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
    He, JD
    Cheung, MK
    Yu, PH
    Chen, GQ
    JOURNAL OF APPLIED POLYMER SCIENCE, 2001, 82 (01) : 90 - 98