Energy Dispersed Large Data Wave Maps in 2+1 Dimensions

被引:73
|
作者
Sterbenz, Jacob [1 ]
Tataru, Daniel [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
GLOBAL REGULARITY; WELL-POSEDNESS; BLOW-UP; SCATTERING; EXISTENCE; CONE;
D O I
10.1007/s00220-010-1061-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article we consider large data Wave-Maps from R2+1 into a compact Riemannian manifold (M, g), and we prove that regularity and dispersive bounds persist as long as a certain type of bulk (non-dispersive) concentration is absent. This is a companion to our concurrent article [21], which together with the present work establishes a full regularity theory for large data Wave-Maps.
引用
收藏
页码:139 / 230
页数:92
相关论文
共 50 条
  • [1] Energy Dispersed Large Data Wave Maps in 2 + 1 Dimensions
    Jacob Sterbenz
    Daniel Tataru
    Communications in Mathematical Physics, 2010, 298 : 139 - 230
  • [2] Singularity formation in 2+1 wave maps
    Isenberg, J
    Liebling, SL
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) : 678 - 683
  • [3] Regularity of Wave-Maps in Dimension 2+1
    Sterbenz, Jacob
    Tataru, Daniel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (01) : 231 - 264
  • [4] Inflationary and dark energy regimes in 2+1 dimensions
    Christmann, MH
    Devecchi, FP
    Kremer, GM
    Zanetti, CM
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (02) : 333 - 344
  • [5] The gauge equivalence of the NLS and the Schrodinger flow of maps in 2+1 dimensions
    Ding, Q
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (27): : 5087 - 5096
  • [6] Inflationary and dark energy regimes in 2+1 dimensions
    M. H. Christmann
    F. P. Devecchi
    G. M. Kremer
    C. M. Zanetti
    General Relativity and Gravitation, 2006, 38 : 333 - 344
  • [7] Travelling wave solutions for a CBS equation in 2+1 dimensions
    Luz Gandarias, Maria
    Santos Bruzon, Maria
    RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), 2008, : 153 - +
  • [8] Evidence for the nonintegrability of a water wave equation in 2+1 dimensions
    Gordoa, PR
    Pickering, A
    Senthilvelan, M
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (10): : 640 - 644
  • [9] Symmetry computation and reduction of a wave model in 2+1 dimensions
    Estevez, P. G.
    Lejarreta, J. D.
    Sardon, C.
    NONLINEAR DYNAMICS, 2017, 87 (01) : 13 - 23
  • [10] Poincare group and relativistic wave equations in 2+1 dimensions
    Gitman, DM
    Shelepin, AL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (17): : 6093 - 6121