Evidence for the nonintegrability of a water wave equation in 2+1 dimensions

被引:0
|
作者
Gordoa, PR
Pickering, A
Senthilvelan, M
机构
[1] Univ Rey Juan Carlos, ESCET, Area Matemat Aplicada, Mostoles 28933, Madrid, Spain
[2] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
[3] Bharathidasan Univ, Dept Phys, Ctr Nonlinear Dynam, Tiruchirappalli 620024, Tamil Nadu, India
关键词
nonintegrability; similarity reductions;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We provide evidence of the nonintegrability of a recently proposed model for water waves in 2 + 1 dimensions: we show that under a nonlinear time transformation, a certain reduction of this partial differential equation is mapped to an ordinary differential equation which does not have the Painleve property. This is in contrast to what happens in the case of the Camassa-Holm equation. Also, and again in contrast to the case of the Camassa-Holm equation, the equation under study fails to admit Dirichlet series solutions.
引用
收藏
页码:640 / 644
页数:5
相关论文
共 50 条
  • [1] Travelling wave solutions for a CBS equation in 2+1 dimensions
    Luz Gandarias, Maria
    Santos Bruzon, Maria
    RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), 2008, : 153 - +
  • [2] Generalized Hirota equation in 2+1 dimensions
    Maccari, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6547 - 6551
  • [3] SOLITON SOLUTIONS TO AN EQUATION IN 2+1 DIMENSIONS
    Yali Shen
    Annals of Differential Equations, 2012, 28 (02) : 220 - 225
  • [4] LUMP SOLUTIONS TO THE (2+1)-DIMENSIONAL SHALLOW WATER WAVE EQUATION
    Ma, Hong-Cai
    Ni, Ke
    Deng, Aiping
    THERMAL SCIENCE, 2017, 21 (04): : 1765 - 1769
  • [5] Stable, high-order discretization for evolution of the wave equation in 2+1 dimensions
    Wandzura, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) : 763 - 775
  • [6] Abundant wave solutions of the Boussinesq equation and the (2+1)-dimensional extended shallow water wave equation
    Hossain, Md Dulal
    Alam, Md Khorshed
    Akbar, M. Ali
    OCEAN ENGINEERING, 2018, 165 : 69 - 76
  • [7] Note on an extension of the CDF equation to (2+1) dimensions
    Toda, K
    Yu, SJ
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) : 255 - 262
  • [8] Wheeler-DeWitt equation in 2+1 dimensions
    Hamber, Herbert W.
    Toriumi, Reiko
    Williams, Ruth M.
    PHYSICAL REVIEW D, 2012, 86 (08)
  • [9] Schrodinger equation with a Coulomb field in 2+1 dimensions
    Dong, SS
    Dong, SH
    PHYSICA SCRIPTA, 2002, 66 (05) : 342 - 344
  • [10] The Calogero–Bogoyavlenskii–Schiff Equation in 2+1 Dimensions
    M. S. Bruzón
    M. L. Gandarias
    C. Muriel
    J. Ramírez
    S. Saez
    F. R. Romero
    Theoretical and Mathematical Physics, 2003, 137 : 1367 - 1377